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Abstract

People use weather forecasts to limit mortality from extreme temperatures, but relying

on weather forecasts leaves them more exposed to errors in those forecasts. We show

that the U.S. population especially relies on forecasts on hot days. Inaccurate forecasts

cause 1,900 more deaths per year as climate change increases the frequency of hot days.

However, if forecasts improve at their historical rate, then total mortality from forecast

errors will fall by 1,500 lives per year over the century. Disentangling the effects of

predicted and surprising heat, we project that climate change will have an insignificant

effect on temperature-related mortality by the end of the century if forecasting does not

improve but that it will significantly decrease temperature-related mortality if forecast

accuracy improves at its historical rate. In ongoing work, we elicit experts’ opinions

about the future improvement in forecast accuracy.
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1 Introduction

Extreme temperatures are already an important cause of mortality [1, 2, 3, 4]. Climate

change is projected to increase mortality from hot days and to reduce mortality from cold

days [5]. To date, such projections do not account for how the forecastability of hot and

cold days may change over the century. When people know extreme weather is coming, they

can use that information to adapt their plans to the weather [6, 7, 8, 9, 10]. People already

use accurate weather forecasts to reduce mortality, especially on hot days [11]. And while

forecasts have improved substantially over the last decades [12], forecast accuracy could still

be improved in many regions even with current technology [13], and new investments [14, 15]

and advancements in machine learning [16, 17] promise improvements even at the bleeding-

edge. We show that by increasing the frequency of hot days, climate change makes future

mortality especially sensitive to the quality of forecasting systems. Forecast errors cause

more mortality under climate change, but policies that continue historical improvements in

forecasting systems can reduce forecast errors by enough to offset that increase.

Figure 1 illustrates why it is important to disentangle the effects of well-forecasted weather

from surprising weather. The three sets of people experience the same extreme heat, but

only people of type A had received an accurate forecast of that extreme heat. Instead, people

of type B had received a forecast of more typical heat, and people of type C had received a

forecast of even more extreme heat. People of type B have the highest risk of death because

they were not prepared for the extreme heat.

Today, there are more people of type B than of types A and C (top row). When we select for

days that turn out to be extremely hot, we are selecting for days with the highest realized

temperatures, which will also tend to be days that overshot their forecasts ex post. Days

that undershot their forecasts tended to be cooler, so we see few people of type C. Regressing

mortality on temperature without accounting for forecasts has two problems. First, it cannot

tell us how many deaths are due to forecast errors rather than to high temperatures per se.

Second, it estimates an effect of extreme heat that reflects the experience of people of type

B, which can cause problems when projecting the effects of future climate change.

Climate change makes extreme heat more common. In the middle row, extreme heat be-

comes well-predicted on average, as it is no longer so extreme relative to the distribution of

temperature. There are now as many people of type C as of type B, and there are also more

people of type A, with accurate forecasts. A temperature-mortality relationship estimated

from the top row, which is dominated by people of type B, would not correctly project the

mortality rate in the middle row, with a larger share of types A and C. Moreover, prior

work has shown that people rely on forecasts less in cold weather [11], so the tendency to
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Figure 1: Extreme Weather May Be Forecasted Differently Today Versus in the
Future Before a day with extreme heat, today some people receive accurate forecasts (type
A), today many people receive too-mild forecasts (type B), and today few people receive too-
extreme forecasts (type C). With climate change (middle row), extreme heat becomes more
typical and there are equal types with too-mild and too-extreme forecasts. If, in addition,
forecasts improve (bottom row), then even fewer people receive too-mild forecasts. If we
estimate the effect of extreme temperatures using today’s data but without disentangling
forecasts from temperatures, then we misrepresent the effects of extreme temperatures in a
world with climate change and, potentially, improved forecasts.
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overestimate the effects of climate change on mortality will be greater for hot days than

for cold days. We project mortality in a warming world by jointly estimating the effects of

realized temperatures and forecast errors.

In addition, forecasts may continue improving over time. In such a world (bottom row),

there would be relatively few people of type B—and thus fewer people who do not get to

prepare for extreme heat. A projection based on the large number of people of type B in the

top row could substantially overstate mortality from extreme heat. Moreover, people may

come to rely on forecasts more as they improve. Then there are not only more people of

type A but they also use their accurate forecasts more effectively, whereas people of type B

become more exposed to their bad forecasts when they rely on them more. The net effects

will depend on how many people shift from type B to type A and on how the consequences

of weather and forecast errors both change when people come to rely on forecasts more. We

project the benefits of forecasting improvements by jointly estimating the effects of realized

temperatures and forecast errors.

We estimate how the effects of temperature on mortality vary with the 1-day-ahead fore-

cast of that temperature (see Methods; note: we may change this to 3-day-ahead soon for

consistency why the expert elicitation). We use a flexible specification that permits the

relation between mortality, temperature, and forecasts to differ based on how hot or cold

the temperature is and on the sign and magnitude of the forecast error. To this end, we

combine data on monthly mortality in U.S. counties from 2005–2017 (soon to be updated

through 2021) with daily data on temperature and day-ahead forecasts. We use county fixed

effects to absorb persistent differences in counties over time, month-of-year fixed effects to

absorb common health or economic shocks across counties, and county-month-specific time

trends in order to absorb differences in counties’ demographic and economic trajectories.

We therefore estimate how temperatures that are unusual for that county and month affect

excess mortality, and how that effect varies with the forecasts of those temperatures.

We also permit the effects of temperature and forecasts to vary with a location’s character-

istics that might affect how people use forecasts and adapt to temperatures. First, people in

hotter climates may be better adapted to hot weather. Second, people in climates with more

variable weather may invest in becoming resilient to weather and may rely on forecasts more.

Third, people in locations that tend to have more accurate forecasts may choose to rely on

those forecasts more. We examine whether each type of heterogeneity matters, holding the

others constant.
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2 Accurate Forecasts Reduce Mortality from Heat

We first show that excess mortality responds to both temperature realizations and tem-

perature forecast errors. These results are shown in Figure 2 which reports results from

a simplified specification that does not allow heterogeneity in the mortality-temperature-

forecast relationship based on a location’s characteristics. The left panel shows the esti-

mated effect on mortality of various combinations of temperature (horizontal) and forecast

errors (vertical). The yellow line in the middle depicts the average forecast error at each

daily temperature. For moderate temperatures, this line tracks the zero forecast error line,

indicating that these temperatures are accurately forecasted on average. At more extreme

temperatures, the average forecast error becomes nonzero, with forecasts tending to be too

warm (positive average error) when the weather is cold and forecasts tending to be too cool

(negative average error) when the weather is hot. These average errors do not result from

forecasters skewing their forecasts, as SI Figure S1 shows that the mean error is zero when

we condition on the forecast rather than the temperature. In other words, forecasts are un-

biased. Instead, these average errors reflect the forces described in the top row of Figure 1.

When we study days that turned out to be extremely hot or cold, we are in part selecting

for days in which forecasts were too mild and selecting against days in which forecasts were

overly extreme.

The orange lines in Figure 2 depict a one standard deviation forecast error. The standard

deviation is largest (around 1.25◦C) on the coldest days, indicating that temperature fore-

casts tend to be less accurate on cold days. The standard deviation declines to a minimum

of around 0.75◦C near 30◦C daily average temperature (the 99th percentile of days in our

sample), indicating that temperature forecasts tend to be most accurate on relatively hot

days.

The shading in Figure 2 reflects the estimated effect on mortality, from blue for a small

effect to yellow for a large effect. At a given temperature (i.e., along a given vertical line),

mortality is minimized around the average forecast error and thus around fairly accurate

forecasts. One might think that whether inaccurate forecasts increase or decrease mortality

depends on whether they are too extreme or too moderate, but we find that, at any given

temperature, inaccurate forecasts in either direction tend to increase mortality. The effect is,

however, asymmetric, with too-warm forecasts (positive forecast errors) especially hazardous

in cold temperatures and too-cool forecasts (negative forecast errors) especially hazardous

in hot temperatures.

The right panel of Figure 2 plots the effect of each temperature when perfectly forecasted

(orange) and averaged over forecast errors of 1 standard deviation in either direction (red)
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Figure 2: Mortality is affected by temperature and forecast errors. The figure
shows the effect of realized temperature and forecast errors on the daily excess mortality rate
(per 100,000 people). Panel A shows estimated excess mortality rate for every combination
of realized temperature and forecast error. Lines colored from black to orange inform about
the distribution of errors conditional on temperature and indicate 0, 1, and 2 standard
deviations. Panel B plots estimated excess mortality rate against temperature when fixing
absolute forecast errors to one or two conditional standard deviations. The curves correspond
to a movement along the colored lines in panel A.
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and of two standard deviations in either direction (purple). Averaging over either type of

mistake reflects an ex ante assessment, in which we know that errors will happen but judge

errors to be equally possible in either direction [11]. If too-moderate forecasts were harmful

but too-extreme forecasts were beneficial, then averaging over positive and negative forecast

errors may suggest effects that are similar to the case with accurate forecasts. However,

because we find that errors of both types increase mortality, averaging over errors does

increase mortality. We find that errors increase mortality by more in hot weather than

in cold weather. And the magnitude of errors matters more in hot weather than in cold

weather.

The mortality-minimizing temperature is at an average daily temperature of 25.7◦C for

well-forecasted temperatures, and is slightly lower for poorly forecasted temperatures. This

temperature is fairly warm for the U.S., being at the 87th percentile of the distribution of

days in our sample. A large proportion of mortality on days with this temperature or slightly

warmer temperatures derives from inaccurate forecasts rather than the heat itself. In the

U.S., cold days kill people at a high rate whether well-forecasted or not, whereas, for all but

the very hottest days, it is surprising heat that kills rather than the heat itself.

3 People Use Forecasts Differently in Different Locations

Figure 3 shows how the mortality-temperature-forecast relationship depends on a location’s

climate and on the quality of its forecasts. The left column depicts the effect of perfectly

forecasted temperatures on mortality. The reported p-values test for the significance of that

dimension of heterogeneity across all temperatures.

Panel A1 shows that hot days cause fewer deaths in locations with hot climates and that

cold days cause more deaths in those same locations. These differences are significant at

the 1% level (p = 0.001). The mortality-minimizing temperature is 20.2◦C in cold counties

(the 66th percentile of U.S. temperatures) and 28.4◦C in hot counties (the 95th percentile

of U.S. temperatures). The dampened sensitivity of hot locations to hot days and the

exaggerated sensitivity of hot locations to cold days reinforce prior work [5, 18]. These

differences are consistent with adaptation to local climate, whether through biophysical

channels or through conscious investments in public policy responses or private actions like

housing choices, air conditioning, clothing, and lifestyles.

Panel B1 shows that mortality at a given temperature is lower in locations with high vari-

ability of day-to-day temperature (p = 0.088), and especially so at hot temperatures. These

differences are consistent with people investing in weather resilience where the weather is

more fickle. Panel C1 shows that mortality tends to also be lower in hot weather for locations
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Figure 3: Mortality responses to temperatures and forecast errors are hetero-
geneous across counties. The figure shows cross-county heterogeneity in the estimated
temperature mortality response (column 1) and the forecast error mortality response at 25°C
(column 2) with respect to annual average temperatures (row A), temperature variability
(row B), and forecast accuracy (row C). Each panel shows the predicted change in the re-
sponse when setting one of the three variables to their first, second, and third quartiles while
holding the other two at their respective medians. Wald test p-values indicate the signifi-
cance of heterogeneity along each of the explored dimensions. Solid (dashed) lines indicate
significant (insignificant) heterogeneity at the 10% level. In the first column, mortality rates
per 100,000 people are expressed in excess of the respective minimum mortality rate. In the
second column, mortality rates are expressed in excess of mortality at a temperature of 25°C
and a forecast error of 0°C.
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that tend to have less accurate forecasts, although this difference is both small and statis-

tically insignificant (p = 0.642). This difference is again consistent with people investing to

become more resilient to the weather where they find the weather to be less predictable.

The right column of Figure 3 depicts the relationship between forecast errors and mortality

on a relatively hot day, with an average temperature of 25◦C (84th percentile of U.S. days

in the sample). Here, positive forecast errors (i.e., too-hot forecasts) tend to have negligible

effects on mortality and perhaps even a beneficial effect on mortality. However, negative

forecast errors (i.e., too-cool forecasts) tend to substantially increase mortality.

Panel A2 shows that a too-cool forecast is especially harmful in cool counties (p = 0.004).

This result is consistent with people in those counties needing to prepare for heat. It is a priori

unclear how day-to-day variability of temperature should affect the impact of forecast errors:

on the one hand, people may rely less on forecasts when they invest in weather resilience,

but on the other hand, forecasts of a given quality could add more value where the weather

is hard to predict from recent experience. Panel B2 shows that the first effect dominates,

as forecast errors cause much more mortality where temperatures are fairly stable from day

to day. The point estimates suggest large effects, but they are not statistically significant

(p = 0.246).

For a given level of day-to-day variability, Panel C2 shows that mortality from forecast

errors is greater where forecasts tend to be more accurate (p = 0.044). This effect could

reflect various differences between counties with more and less accurate forecasts or could

reflect intentional investment in forecasting system upgrades. However, it is also consistent

with people choosing to rely on forecasts more when they learn that forecasts tend to be

good.

Putting the pieces together, we have seen that well-forecasted hot days are especially harmful

in cold places with stable weather. We have also seen that forecast errors tend to be most

harmful on hot days, and especially so where hot days are unusual (in cold locations with

stable weather) and forecasts are typically accurate.

4 Climate Change Makes Inaccurate Forecasts More Hazardous

We now use the estimated response of mortality to temperature and forecast errors to project

mortality from climate change in the U.S. These projections hold income, demographics, and

technologies constant, as they maintain the mortality-temperature-forecast response surface

estimated from 2005–2017 data (soon to be extended through 2021).

To project future temperatures we rely on gridded daily temperature output from the GFDL-
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Figure 5: Forecast errors become more important with climate change. The
figure shows the relationship between the future evolution of forecast accuracy and mortality
from climate change in the U.S. It contrasts a scenario of constant forecast accuracy (blue)
with a scenario of continued improvements in forecast accuracy (green). In each panel,
column one displays changes in mortality solely due to forecast errors, column two shows
changes in predicted mortality solely due to changes in temperatures, and column three
displays the combination of the two previous effects. Panel A shows effects on hot days
with temperatures above 25◦C, panel B shows results for cold days below 5◦C, and panel
C displays the aggregate effect across all days of the year. Panels A-C hold the mortality-
temperature-forecast relationship constant at current counties’ climates and current forecast
accuracy. Panel D is like panel C, except permitting county characteristics to evolve due to
climate change (see text for details).
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ESM4 model under SSP2-4.5 aggregated to the county level (see section 6.3 for details). Fig-

ure S7 in the appendix shows that the U.S. grows hotter over time, but its daily temperatures

do not systematically become more or less variable.

We consider two scenarios for forecast accuracy (see Figure 4). First, we assume that fore-

casts remain as accurate as they are now. In this case, average forecast accuracy does improve

slightly because the U.S. becomes hotter and forecasts are currently more accurate in heat.

Second, we assume that the rate of improvement from 2006 to 2016 continues. In this case,

forecasts are dramatically better by the end of the century. (In work in progress, we survey

forecasters to obtain their anticipated improvements.)

Figure 5 projects the evolution of U.S. temperature-related mortality over the century. It

splits mortality into two categories: mortality that is solely due to temperature forecast errors

(column 1), and mortality that is solely due to temperatures deviating from the minimum

mortality temperature (column 2). Their sum is in column 3.

Panel A shows changes in mortality on hot days. Temperature-driven mortality increases

on these days as they become more frequent and more extreme. In addition, mortality

due to forecast errors increases if forecast quality remains constant, because people rely

on forecasts on hot days. However, if forecasts improve over time at their historical rate,

we project that deaths from forecast errors will decline. Combining the forecast error and

temperature effects, we project that around 2,000 annual temperature-related deaths can be

avoided on hot days by the end of the century if forecasts continue to improve.

In contrast, Panel B of Figure 5 projects very different effects on cold days. First, temperature-

driven mortality declines on cold days as they become less frequent and less extreme. Second,

forecast errors do not matter much on cold days, because people do not rely on forecasts in

the cold. As a result, improvements in forecast quality do not substantially affect mortality

from forecast errors in the cold.

Combining the effects of hot days, cold days, and all other days (panel C), we project a

net reduction in temperature-driven mortality, which is driven by changes in cold and cool

days. However, we also project that mortality from forecast errors will increase over time

if forecast quality is constant but fall over time if forecast quality improves at its historical

rate. These effects are driven by warm and hot days. Combining each type of mortality,

we project that climate change would reduce annual mortality by 14,500 lives if forecasts

remain at their current quality and by 18,000 lives if forecasts improve at their historical

rate, as the lives saved from reduced cold and cool days dominate other effects.

Panels A-C of Figure 5 allow the mortality-temperature-forecast relationship to vary around
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the country based on current counties’ climates and current forecast accuracy but do not

account for how these county characteristics will evolve with climate change. In essence,

they permit populations to have adapted to current conditions but do not permit further

adaptation as the climate changes. Panel D of Figure 5 permits new adaptation over the

century. Here the effects of temperature and forecast errors change with counties’ climates

and with the accuracy of counties’ forecasts. Mortality from forecast errors increases to 2,400

lives per year in the constant accuracy case. This increase is driven by people relying on

forecasts more as counties become hotter, both directly and because hotter counties tend to

have more accurate forecasts. However, mortality from forecast errors still declines over the

century in the improving-accuracy case.

Mortality from temperature again falls over the century, but not by as much as before. As

countries become hotter, the remaining cold and cool days become more harmful, which

limits the benefits of warming. Mortality from well-forecasted temperatures is now sensitive

to the forecast quality scenario, because mortality from well-forecasted temperatures tends

to be lower where forecasts are more accurate (note: this may be a statistical artifact that

will not persist with our next round of work).

Combining deaths form temperature and forecast errors, our central estimate projects 1,100

fewer deaths per year by the end of the century in the constant-accuracy scenario. However,

our confidence intervals cannot rule out that climate change will have no effect on mortality.

In contrast, in the improving-accuracy scenario, we project 5,500 fewer deaths per year by

the end of the century and this effect is statistically significant.

5 Discussion

By increasing the frequency of hot days on which people use forecasts to mitigate temperature

hazards, climate change will make accurate forecasts more beneficial and inaccurate forecasts

more harmful. We project that deaths in the U.S. from inaccurate forecasts will increase

unless forecast quality improves sufficiently fast. Past improvements in forecast quality have

come via substantial public funding for earth observations, data sharing networks, modeling

advances, and computational resources [?]. Further funding could be critical to limiting

mortality from forecast errors.

The quality of forecasts is currently unevenly distributed around the world. In particular,

regions that tend to be poorer and hotter tend to have worse forecasts, partly due to a lack of

investment in weather observation infrastructure [13]. These same regions are also projected

to have an especially strong increase in mortality from climate change [5]. Our results suggest

that accurate forecasts may be especially useful—and forecast errors especially costly—in
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these regions. Investing in weather observation infrastructure and forecasting capacity may

be an effective form of climate adaptation funding, and one that would have spillover benefits

for the rest of the world by improving forecasts elsewhere.

Our projections allow people to depend on forecasts more as forecasts become better, but

they do not account for how new technologies may increase dependence on forecasts. In

recent years, widespread diffusion of smartphones has expanded access to quality forecasts.

By increasing use of forecasts, these types of technologies will further increase the benefits of

accurate forecasts and also amplify the hazards from inaccurate forecasts. By ignoring this

factor, our projections may understate the sensitivity of mortality to forecast errors over the

coming decades.

On the other hand, our analysis does not account for how having access to the long-run

forecast that is scientific modeling of climate change may stimulate public and private actors

to invest in resilience. Our heterogeneity analysis shows that people are less exposed to

extreme temperatures and to inaccurate forecasts where temperatures are highly variable

from day to day. We have suggested that these differences could result from investments

in weather resilience. Our projections may overstate the sensitivity of mortality to forecast

errors over the coming decades by ignoring investments based on expectations of climate

change.

Recent policies have pushed investments in forecasts beyond the one-day-ahead horizon we

study here (note: may soon be three-day), including at the seasonal scale [14, 15]. Actors

throughout the economy do pay attention to forecasts at the seasonal horizon [8, 19]. Future

work should study how mortality depends on these longer-run forecasts and on how these

longer-run forecasts affect sensitivity to the short-run forecasts we study here. It may be

that forecast at different horizons substitute for each other because better short-run forecasts

enable actors to correct course after mistaken long-run forecasts [20], but it may also be

that actors make long-run investments based on long-run forecasts only when they know

that they can make such course corrections. As seasonal outlooks and multi-week forecasts

mature and diffuse, future work should explore their benefits for mortality in order to guide

policy investments.
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6 Methods and Materials

6.1 Setting and Data

6.1.1 U.S. Weather and Weather Forecasts

Our two primary explanatory variables are daily average temperature and forecasted temper-

ature. Temperature forecasts come from the U.S. National Weather Service (NWS) National

Digital Forecast Database (NDFD). This database contains the forecasts that users see on

the NWS website (weather.gov) and which are the result of integrating numerical weather

predictions, other computational processing, and expert judgment from NWS meteorologists.

We focus on the day-ahead forecast and on daily minimum and maximum temperature point

forecasts, from which we calculate daily average temperature by taking the simple average of

the two measures. We use the noon UTC forecast run. We use forecast data from April 13,

2005 onward, which is the universe of data available in the NDFD containing both minimum

and maximum temperature forecasts. Roughly 5% of the county-day values are missing due

to missing values in the database. We interpolate these observations using the nearest avail-

able forecast. The NDFD stores the forecasts on a consistent spatial grid with resolution

of 2.5km or 5km, depending on the time period. We aggregate the forecasts to the county

level by taking the population-weighted average, based on the 2010 population grids from

[21].

For weather realizations, we use PRISM (Parameter-elevation Regressions on Independent

Slopes) Climate Group data [22]. PRISM combines weather station observations with a

regression-based interpolation procedure that accounts for weather gradients such as eleva-

tion, weather inversions, rain shadows, and coastal proximity. The output is daily measures

of weather on a consistent 4km resolution grid across the country. We aggregate the grid-

ded measures to the county level using the same procedure as the forecasts. We calculate

a day’s average realized temperature and average forecasted temperature by averaging the

day’s minimum and maximum temperature.

6.1.2 Mortality

The primary outcome we study is mortality. Mortality data come from the CDC’s WONDER

Online Database (https://wonder.cdc.gov/). It contains records of all vital events that

occurred in the U.S. from 2005 to 2017, recorded at the county-month level. Data for counties

with a small number of vital events are suppressed by the CDC due to privacy concerns. See

Figure S3 for a map of suppressed counties. For counties with missing mortality rates we

impute values using the monthly state-wide mortality rate. Estimation results do not change
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significantly when dropping suppressed values from the estimation. We have also estimated

the relationship between mortality, forecasts, and temperature at the monthly level using

complete counts of vital events from the CDC’s restricted-access database. The results are

comparable (See Section B for details).

From the set of all mortality events, we calculate county mortality rates per 100,000 people by

dividing the total mortality each day by the county population in that year. Population fig-

ures are from the NIH Surveillance, Epidemiology, and End Results (SEER) Program.

6.1.3 Climate Projections

Projections of future temperature come from the Climate Model Intercomparison Project,

version 6 (CMIP6) Global Fluid Dynamics Laboratory (GFDL) model. We consider gridded

daily temperature projections within the Continental U.S. from 2015 through 2100. We

aggregate the data to the county-level using 2010 population grids from [21].

6.2 Econometric Model

The econometric model relates mortality to temperature and forecast errors while controlling

for potentially correlated weather and other spatial or temporal confounders.

We flexibly model the relationship between mortality, temperature, and forecast errors by

fitting a tensor product spline basis to approximate the function f(Tcd, ecd), where Tcd is

realized temperature and ecd is realized forecast error (defined as the forecasted temperature

minus the temperature realization) in county c on day d. After the spline transformation

of temperatures and forecast errors, we express the model linearly with f(Tcd, ecd) = X ′
cdβ.

On the temperature dimension, we use a fourth-order polynomial (matching recent work

estimating the relationship between mortality and temperature [5]). We subtract county-

specific means from forecast errors to adjust for possible measurement error or misalignment

between the PRISM realized temperature and the NDFD forecast data.1 The demeaned

forecast errors enter according to a natural cubic spline with internal knots at -1 and +1◦C

error and boundary knots at -2.5 and +2.5◦C error (so that the relationship is assumed to be

linear beyond those values). These values roughly correspond to 1 and 2 standard deviations

of forecast error. To allow for a different relationship between mortality and forecast errors

at different temperatures, we incorporate a quadratic interaction term between the natural

cubic spline of forecast errors and temperatures. Overall, the procedure results in a vector

Xcd with entries that are each functions of Tcd and ecd.

1Results are robust to using alternative demeaning techniques such as county × month or county × month
× temperature bin specific means and to using raw forecast errors. Subtracting county-specific means is our
preferred specifications as it results in the highest precision.
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We aggregate this vector to the monthly level by summing over the days within year-month

t: Xct =
∑

d∈tXcd. We estimate a common effect across the days within a month. Our

specification accounts for harvesting across days within a month.

The estimating equation is

mct = X ′
ctβc + g(Pct) + λcm + αcm × t+ ρt + εct,

where mct is county c’s mortality rate in year-month t and

βc = β̄ + γAvgT · AvgTc + γV arT · VarTc + γFcstAcc · FcstAccc.

We isolate excess mortality by controlling for location and time fixed effects. The λcm are

county-month fixed effects. For each month m, these absorb all location-specific factors that

are fixed over the sample period, including geography, infrastructure, and governance. These

also absorb all location-specific and persistent seasonal effects. The county-month trend αcm

absorbs consistent evolution in a county’s mortality rate, within each season. Year-month

fixed effects ρt partial out all confounders common across counties within a year-month,

including national economic or health patterns. We also control for measures of above or

below median rainfall (g(Pct)). Altogether, we estimate mortality in excess of what would

be expected based on county, season, time period, and rainfall.

The εct is an error term. We cluster all standard errors at the Weather Forecast Office

(WFO) level in order to account for unobserved correlation within a WFO over time and

within a WFO’s counties in a given year-month.

The βc capture cross-county heterogeneity in the mortality response to temperature and

forecast errors. The simpliifed model without heterogeneity contyains only β̄. The full

model also contains coefficients on AvgTc for annual average temperature, V arTc for tem-

perature variability, and FcstAccc for the average temperature forecast accuracy in county

c. We calculate annual average temperatures as the simple mean across all daily temper-

atures in a county between 2006 and 2016. Temperature variability is measured through

the root mean squared error (RMSE) of persistence temperature forecasts, i.e. how much

do temperatures on day t deviate on average from temperatures on the previous day t − 1:

VarTc =
√

(1/N)
∑

t(Tct − Tct−1)2.
2 Finally, we calculate the average forecast accuracy in

2We have chosen this measure as it provides a good comparison for the accuracy of day-ahead temperature
forecast errors. In an extension, we have also experimented with the standard deviation of temperature
around the multi-year average temperature on the day of year as an alternative measure for temperature
variability. This measure is highly correlated with the RMSE of persistence forecasts and results are robust
to the alternative specification.
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county c as the RMSE of day-ahead forecast errors. A large RMSE of forecast errors implies

that temperature forecast are inaccurate in county c while small RMSEs imply accurate

forecasts.

We note that average temperatures, temperature variability, and forecast accuracy are all

correlated. This is visualized in Appendix Figure S2 and also apparent in the maps in Figure

S5. For example, temperature variability in the US is generally lower in warmer counties

which also leads to forecasts being more accurate in warm areas. The heterogeneity analysis

identifies the orthogonal impact of of temperature, forecast errors, and mortality

The average relationship between daily temperatures, forecast errors, and mortality is identi-

fied by the exogeneity of weather and forecast errors once we net out location and time fixed

effects and rainfall. However, the heterogeneity in that relationship is not causally identified

and instead only provides correlational evidence. Confounders such as different age distri-

butions across counties might be responsible for some of the heterogeneity that we attribute

to differences in average temperatures, temperature variability, and forecast accuracy.

6.3 Extrapolating Forecast Errors and Projecting Mortality

To project future mortality as a function of temperature and forecast errors, we need to

simulate future one-day-ahead forecast errors given climate projections on daily average

temperatures. Analyzing past forecast errors on the period from 2005-2017 reveals that

forecast error distributions are not Normal conditional on temperature, have an average

skewness slightly larger than 0, and exhibit substantial excess kurtosis at high temperatures.

Forecast errors also have non-zero means and differential standard deviations depending on

temperature, location, and month. We further observe a strong decreasing annual trend in

the standard deviation of forecast errors across all ranges of the temperature distribution.

When resampling future forecast errors, we aim to preserve all of these moments but allow the

standard deviation of forecast errors to either stay constant beyond the year 2020 (constant

forecast accuracy scenario) or continue to decrease at the observed historical rate (improving

forecast accuracy scenario).

To achieve this, we implement the following procedure, which we plan to supplement with

evidence from an expert elicitation of professional weather forecasters in the future.

1. Using ordinary least squares and population weights, we estimate the mean of fore-

cast errors conditional on temperature, county, and month in the observed 2005-2017

sample:

µcd := E[ecd|Tcd, c, t] = hµ(Tcd) + λcm.
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Here, hµ denotes a natural cubic spline of temperature with boundary knots at -15◦C

and 35◦C, and internal knots evenly spaced in 5◦C steps. λcm denotes county × months

fixed effects.

2. Given estimated means and using a Gamma generalized linear model with a logistic link

function and population weights, we compute the variance of forecast errors conditional

on temperature, weather forecasting office, month, and year in the observed 2005-2017

sample:

σ2
cd := E[(ecd − µcd)

2|Tcd, c, t, year] = exp (hσ(Tcd) + λWFO,m + δ · year) .

Again, hσ denotes a natural cubic spline of temperature with the same knots as hµ,

λWFO,m denotes weather forecasting office × month fixed effects, and δ denotes the

estimated annual trend in forecast error variance. We use a Gamma generalized linear

model with logistic link to prevent future predicted forecast variances from becoming

negative. We utilize WFO×month fixed effects as opposed to county×month fixed

effects to avoid overfitting, as weather forecasting offices generally cover multiple coun-

ties.

3. We compute standardized forecast errors ẽcd from observed forecast errors in the 2005-

2017 sample using the respective estimated mean and variance:

ẽcd :=
ecd − µ̂cd

σ̂cd

.

The standardized errors have mean zero and unit variance, though their higher order

moments can still depend on temperature, location, or month.

4. To match these higher order moments conditional on temperature, we sample a hy-

pothetical normalized forecast error ẽ
(b)
cd in the following way: We determine in which

5◦ temperature bin the projected future temperature under climate change falls. We

then sample from all historical normalized errors ẽcd that were observed on a day with

a temperature in the same bin.

5. Given resampled normalized errors, we can compute an imputed forecast errors in

county c on day d as

e
(b)
cd = µ̂cd + σ̂cd · ẽ(b)cd .

In the improving accuracy scenario, we use continued estimated annual trends δ̂ · year.
In the constant accuracy scenario, we set the year variable to 2020 for all years beyond

2020. The resulting average trends across all counties are displayed in Figure 4.
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The procedure ensures that we match means and standard deviations of forecast errors con-

ditional on temperature, location, and month. When assessing the resampling procedure on

the observed past weather data from 2005-2017, it also performs fairly well in matching higher

order moments of forecast errors conditional on temperature as shown in Figure S4.

Given future temperatures Tcd and the respective imputed forecast errors e
(b)
cd for each county

and day from 2015 to 2100, we predict monthly mortality rates m̂
(b)
ct using the model outlined

in section 6.2. We compute uncertainty in estimates by carrying through both estimation

uncertainty and resampling uncertainty.
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[4] Barreca, A., Clay, K., Deschênes, O., Greenstone, M. & Shapiro, J. S. Adapting to

climate change: The remarkable decline in the U.S. temperature-mortality relationship

over the 20th century. Journal of Political Economy 124, 105–159 (2016).

[5] Carleton, T. et al. Valuing the global mortality consequences of climate change ac-

counting for adaptation costs and benefits. The Quarterly Journal of Economics 137,

2037–2105 (2022).

[6] Bakkensen, L. Public versus private risk information: Evidence from U.S. tornadoes.

Tech. Rep., University of Arizona (2016).

[7] Schlenker, W. & Taylor, C. A. Market expectations of a warming climate. Journal of

Financial Economics 142, 627–640 (2021). URL https://www.sciencedirect.com/

science/article/pii/S0304405X21001495.

[8] Shrader, J. Improving climate damage estimates by accounting for adaptation.

Working Paper (2023). URL http://jeffreyshrader.com/papers/forecasts_and_

adaptation.pdf.

20

https://www.jstor.org/stable/20485691
https://www.sciencedirect.com/science/article/pii/S0304405X21001495
https://www.sciencedirect.com/science/article/pii/S0304405X21001495
http://jeffreyshrader.com/papers/forecasts_and_adaptation.pdf
http://jeffreyshrader.com/papers/forecasts_and_adaptation.pdf


[9] Anand, V. The value of forecast improvements: Evidence from advisory lead times and

vehicle crashes. Available at SSRN 4206910 (2022).

[10] Song, Y. The value of weather forecasts: Labor responses to accurate and inaccurate

temperature forecasts in China. Job market paper (2022).

[11] Shrader, J. G., Bakkensen, L. & Lemoine, D. Fatal errors: The mortality value of

accurate weather forecasts. National Bureau of Economic Research w31361, 41 (2023).

[12] Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather predic-

tion. Nature 525, 47–55 (2015).

[13] Linsenmeier, M. & Shrader, J. G. Global inequalities in weather forecasts (2023). URL

https://osf.io/7e2jf.

[14] Rep. Lucas, F. D. Weather Research and Forecasting Innovation Act of 2017 (2017).

URL https://www.congress.gov/bill/115th-congress/house-bill/353.

[15] ECMWF. ECMWF Strategy 2021–2030. Tech. Rep. (2020). URL https://www.ecmwf.

int/en/about/what-we-do/strategy. Doi: 10.21957/s21ec694kd.

[16] Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 0,

eadi2336 (2023). URL https://www.science.org/doi/10.1126/science.adi2336.

Publisher: American Association for the Advancement of Science.

[17] Lopez-Gomez, I., McGovern, A., Agrawal, S. & Hickey, J. Global Extreme Heat Fore-

casting Using Neural Weather Models. Artificial Intelligence for the Earth Systems

2 (2023). URL https://journals.ametsoc.org/view/journals/aies/2/1/AIES-D-

22-0035.1.xml. Publisher: American Meteorological Society Section: Artificial Intel-

ligence for the Earth Systems.

[18] Heutel, G., Miller, N. H. & Molitor, D. Adaptation and the mortality effects of tem-

perature across us climate regions. Review of Economics and Statistics 103, 740–753

(2021).

[19] Lemoine, D. & Kapnick, S. Financial markets value skillful forecasts of seasonal climate.

Nature Communications 15, 4059 (2024). URL https://doi.org/10.1038/s41467-

024-48420-z.

[20] Millner, A. & Heyen, D. Prediction: The long and the short of it. American Eco-

nomic Journal: Microeconomics 13, 374–398 (2021). URL https://www.aeaweb.org/

articles?id=10.1257/mic.20180240&&from=f.

21

https://osf.io/7e2jf
https://www.congress.gov/bill/115th-congress/house-bill/353
https://www.ecmwf.int/en/about/what-we-do/strategy
https://www.ecmwf.int/en/about/what-we-do/strategy
https://www.science.org/doi/10.1126/science.adi2336
https://journals.ametsoc.org/view/journals/aies/2/1/AIES-D-22-0035.1.xml
https://journals.ametsoc.org/view/journals/aies/2/1/AIES-D-22-0035.1.xml
https://doi.org/10.1038/s41467-024-48420-z
https://doi.org/10.1038/s41467-024-48420-z
https://www.aeaweb.org/articles?id=10.1257/mic.20180240&&from=f
https://www.aeaweb.org/articles?id=10.1257/mic.20180240&&from=f


[21] CIESIN. U.S. Census grids 2010. https://sedac.ciesin.columbia.edu/data/

collection/gpw-v4 (2017). Accessed: 2018-08-30.

[22] PRISM Climate Group. http://prism.oregonstate.edu (2004).

22

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://prism.oregonstate.edu


Supplementary Material

23



A Additional Figures and Tables
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Figure S1: Forecast errors are relatively unbiased conditional on forecasted tem-
peratures but biased conditional on realized hot and cold temperatures. The
figure shows the distribution of day-ahead temperature forecast errors conditional on real-
ized temperature (panel A) and forecasted temperatures (panel B). While forecast errors are
unbiased conditional on forecasts (ex-ante), they are biased conditional on very hot and very
cold temperatures (ex-post).
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Figure S2: Temperature forecast are more accurate in counties with higher av-
erage and less volatile temperatures. The figure shows the joint distribution of forecast
accuracy and average annual temperature (panel A) and the joint distribution of forecast
accuracy and temperature variability (panel B) on the county-level. Red points and lines
indicate the 25%, 50%, and 75% quantiles at which heterogeneity is evaluated in figure 3.

Figure S3: Percentage of suppressed values in CDC Wonder data The map shows
the percentage of suppressed and missing monthly deaths in the CDC wonder database for
the period between 2005 and 2017.
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Figure S4: Resampled forecast errors match observed forecast error moments
conditional on temperature. Based on the 2005-2017 daily temperature and forecast
error data, the figure shows observed population weighted moments of forecast errors (red)
as well as moments of resampled hypothetical forecast errors (blue) conditional on realized
temperature.
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Figure S5: Mapping county-level covariates. The maps display the distribution of
average annual temperatures, temperature variability, and forecast accuracy across US coun-
ties. The three covariates are used in the heterogeneity analysis.
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Figure S6: Robustness of estimated mortality response to different bias correc-
tions. The figure displays the robustness of the estimated mortality response when using
different bias correction techniques for forecast errors. Whether we let forecast errors enter
the response function directly (bs0) or subtract county (bs1), county × month (bs2), county
× month × temperature bin (bs3), or county × temperature bin (bs4) specific error means
before forecast errors enter the response function, does not impact results substantially. Our
preferred specification corrects for county-specific means (bs1) and its confidence intervals
are displayed in grey.
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Figure S7: Projections of average US county characteristics under climate
change. The figure displays projections for average annual temperatures and day-to-day
temperature variability under SSP2-4.5 using GFDL-ESM4. It also shows projected forecast
accuracy as measured through the RMSE of forecast errors under two potential scenarios:
constant accuracy (blue) and improving accuracy (green).
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B Corroborating the WONDER results

Table S1: Effect of Temperature on Mortality With and Without Accounting
for Forecasts

(1) (2)
log death rate log death rate

Temperature -0.00302*** -0.00840**
(0.000799) (0.00403)

Temperature2 -0.0000273 0.00299***
(0.0000353) (0.00105)

Forecast 0.00544
(0.00372)

Forecast2 0.00290***
(0.000939)

Temperature × Forecast -0.00591***
(0.00198)

Rain 25th percentile 0.00220* 0.00214*
(0.00116) (0.00117)

Rain 75th percentile -0.00291** -0.00289**
(0.00111) (0.00108)

N 7,203 7,203
Clusters 130 130

Notes: The table shows results of a single estimation of
Equation (??) on the restricted-access mortality sample.
The dependent variable is the natural log of the average
over the month of the daily mortality rate per 100,000 peo-
ple. Forecasts are the 1-day-ahead temperature forecast.
The model includes year-month fixed effects and county-
by-month-of-year fixed effects interacted with a linear time
trend. Weighted by annual county population. Standard er-
rors, clustered at the county warning area-level, are below
each estimate. Significance: * p < .10, ** p < .05, ***
p < .01.
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