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Abstract. Physical processes routinely influence economic outcomes,
and actions by economic agents can, in turn, influence physical pro-
cesses. This feedback creates challenges for forecasting and inference,
creating the potential for complementarity between models from dif-
ferent academic disciplines. Using as example of prediction of water
availability during a drought, we illustrate the potential biases in fore-
casts that only take part of a coupled system into account. In partic-
ular, we show that forecasts can alter the feedbacks between supply
and demand, leading to inaccurate prediction about future states of
the system. Although the example is specific to drought, the problem
of feedback between expectations and forecast quality is not isolated to
the particular model—it is relevant to areas as diverse as population
assessments for conservation, balancing the electrical grid, and setting
macroeconomic policy.

1 Introduction

The interactions between human and natural systems play an important role in deter-
mining environmental and economic outcomes. Environmental conditions determine
the scarcity or abundance of resources, which in turn influence the incentives to un-
dertake a variety of economic activities. Those human behaviors also directly impact
environmental conditions creating important feedbacks that can hasten or temper en-
vironmental impacts. While considerable scholarship has been devoted to research at
the nexus of coupled natural and human systems, surprisingly little work has focused
on the role played by forecasts in shaping that relationship.

Forecasts are important for at least two reasons. First, they play an increasingly
pivotal role in public policy, shaping decision making in areas ranging from trans-
portation and energy to the health and leisure sectors. Second, they are largely de-
signed to influence human activity. Air quality forecasts are meant to influence how
much time is spent outdoors, traffic forecasts are designed to influence choices about
commute modes and times, and it is hoped that climate forecasts will help us choose
appropriate carbon emissions scenarios.

From a modeling perspective, the noteworthy feature of these forecasts is that
they can lead to changes in behavior today based on revised expectations about
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the future. A forecaster who does not take this behavioral response into account is
assuming that individuals, when given the forecast, will continue to act in the same
way as they did before the release of the forecast. This is unlikely to be the case,
however, since the very act of publicly releasing a forecast increases the likelihood
that it will miss its mark due to the attending changes in behaviors that result from
altered expectations. Moreover, the solution is not simply to increase the accuracy of
the forecast. Ironically, forecasts that are believed to be more accurate can generate
larger changes in expectations leading to more powerful feedback within the system,
further worsening the error.

To be clear, these forecast feedbacks are distinct from the sorts of economic feed-
backs that are often captured in sophisticated modeling exercises. Those feedbacks are
based on expected behaviors in response to the realization of environmental states,
but forecasts now require us to include changes in behavior based on expectations
regarding yet unrealized environmental states. Ignoring this latter feedback can gen-
erate errors in either direction. If the “näıve” forecast predicts that the state of the
system will be low in the future, forward looking agents with well defined property
rights may use less of the resource today in order to conserve it for use in the future.
The reduced use, however, leaves more of the resource unexploited, leading the fore-
cast to exaggerate near-term scarcity and thus appear overly pessimistic. In contrast,
if the forecast predicts that the state of the system will be high, agents may exploit
the resource more intensively under the false assumption that ample supplies will
remain in the future, leading to an overestimate of resource abundance. The presence
of public goods and externalities, where property rights are not well defined, may
change this calculus. In that case, a low forecast provides each agent with an incen-
tive to rush to use the resource before it is depleted by others, precipitating a race to
the bottom.

The form of feedback we consider is distinct from the typical concerns about
which variables to include in a statistical forecasting model. As our model illustrates,
even forecasters who have proxy variables for each component of the true model and
have had good performance with those proxies can routinely issue ex post-inaccurate
forecasts if agent expectations lead to changes in the state. Therefore, the failure is
not one of excluding important variables but of not taking appropriate causal channels
into account. In the context of our model, the forecast itself influences the system.

The fundamental challenge to modeling these forecast feedbacks is our limited
understanding of expectation formation by forward-looking economic agents and how
those expectations link back to the systems being forecast [19]. In this paper, we
develop a simple model that provides one example of the problems that can arise
when trying to make accurate forecasts in the presence of feedbacks. We look at a
stylized example of farmers who make planting decisions based on expectations about
water availability that are influenced by forecasts. We show that if forecasts affect the
expectations of the agents, those expectations determine actions that the agent takes
in advance of the forecasted event being realized, and if those actions influence the
event being forecasted, then the forecast will be inaccurate, in potentially complex
ways. For clarity, we present a simple model where each part of the system directly
influences the other part, but the result can hold more generally and for systems where
the causal chain is longer. This model also provides some insight into how to study
this process empirically. When analyzing situations where expectations are important,
the major challenge for an empirical researcher is measuring those expectations. If
agents use forecasts, at least in part, to form their expectations, then forecasts can be
used to identify changes in expectations—a method that has begun to be employed
in economics research [15,17].
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2 Example: Forecasting water levels

We now turn to a stylized model of water level forecasting to highlight the key con-
ceptual point that even with good understanding of a physical system, feedback can
lead to erroneous forecasts. These errors can be eliminated if the feedback is correctly
taken into account. The topic is timely, with the western United States experiencing
a severe and prolonged drought. Under continued climate change, such droughts are
expected to increase in frequency for many areas of the country [5]. This example
is also not purely theoretical: the National Oceanic and Atmospheric Administration
(NOAA), among other groups, regularly release forecasts of drought, groundwater lev-
els, and other hydrological parameters of interest to farmers and the broader public
[16].

The system we model involves farmers who need to make judgments about the
future supply of water in order to make planting decisions. These decisions, in turn,
affect the supply of water since more intensive planting will consume more water (in
an area like California, 80% or more of fresh water is used for agriculture [20]). We
consider what happens when a forecaster tries to predict the water level, both with
and without taking these expectations into account.

The model shows that when farmers respond to forecasts of the water level when
making their planting decisions, they influence the realized amount of water. Thus, if
a forecaster says that rainfall or the water level will be low, more farmers will decide
to forgo planting this season, reducing demand for water and therefore supporting the
water level. This will cause the forecast to appear to be erroneously low. Similarly, a
forecaster who says that rainfall or the water level will be high will cause more farmers
to plant, raising demand for water and placing strain on the water supply. This will
cause the forecast to, ultimately, be erroneously high. A forecaster who incorporates
the effect he or she has on demand can solve for the optimal prediction that will result
in a forecast that matches the realization.

2.1 Farmers

Consider farmers who are each deciding whether to plant crops in year t. At the
beginning of the season, farmer i can plant crops, and if the water level during the
season, Wt, is sufficiently high, then the crops will grow and can be sold in the market
for price pA. Each farmer can plant the quantity A crops per season, and for simplicity,
we assume that the farmer cannot choose to plant just a fraction of his or her land
and that the water level must be sufficient for all planted area or else the entire crop
fails.1 Thus, revenue conditional on successful harvest is pAA. It costs the farmer K
dollars to plant the crops (for seed, labor, capital rental, and other inputs), which
cannot be recouped if the harvest fails. We assume that farmers have idiosyncratic
water needs, and the crops of farmer i grow and can be sold when Wt > γ + ηi.
Combining these assumptions, if the farmer plants, the expected profit will be

E[yit] = Pi(Wt > γ + ηi)(pAA−K)− Pi(Wt ≤ γ + ηi)K. (1)

Pi(Wt > γ + ηi) reflects the beliefs of farmer i about the probability his or her crops
will succeed. The parameter γ can be interpreted as the average drought susceptibility
of the crops. If the farmer plants nothing, we assume, without loss of generality, that

1 The assumption that all crops fail is made purely for analytical convenience. The con-
clusions would be substantially unchanged with fractional failure proportional to the water
shortfall. Indeed, across multiple runs of the simulation presented below, average crop failure
is equivalent to this more general model.
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expected profit is zero. Assume that the farmer only plants if he or she expects profits,
as defined in (1), to be positive, so planting occurs when Pi(Wt > γ+ηi) ≥ K/(pAA).

In principle, we allow each farmer i to assign a different value to Pi(Wt > γ+ ηi),
which can arise due to differences in information or beliefs as well as idiosyncratic
water needs. In the spirit of recent work on persuasion of Bayesian agents [11], all

farmers have access to a public forecast Ŵt of the predicted amount of water available
for use this season, and we assume that each farmer makes decisions based on this
public forecast, a personal belief about the state, knowledge of the distribution of η
across farmers, knowledge of the structural equations governing demand, and some
knowledge about the structure of the public forecasts. The exact level of structural
knowledge will be different for each forecasting scenario and will be specified in Section
2.3.

The farmer combines the public forecast and structural knowledge to form a pri-

vate forecast, Ŵ f
t , each period, where the superscript f denotes the farmer’s forecast.

We specify the fraction of farmers who plant, conditional on the forecast Ŵ f
t , as,

f(Ŵ f
t ) = P

(
Pi(Wt > γ + ηi) ≥ K/(pAA) | Ŵ f

t

)
=


0 if 1

2b (Ŵ
f
t − γ)− K

pAA
< −1

1 + 1
2b (Ŵ

f
t − γ)− K

pAA
if − 1 ≤ 1

2b (Ŵ
f
t − γ)− K

pAA
≤ 0

1 otherwise.

(2)

This fraction can be strictly between 0 and 1 due to heterogeneous water needs as
reflected in ηi, as well as idiosyncratic beliefs. The parameter b can be thought of as
a parameterization of heterogeneity. As b→ 0, the fraction who plant tends to either

0 or 1 depending on whether Ŵ f
t > γ. Importantly for our analysis, the fraction

planting is increasing in Ŵ f
t , which reflects that when the private forecast water level

is higher, more farmers plant. The assumed relationship between the public forecast

Ŵt and Ŵ f
t will be made explicit in Section 2.3 as we consider different forecasting

scenarios.
Collapsing all public information into a single signal Ŵ f

t abstracts from several
issues. Knowing the distribution of η, each farmer knows this demand system and
can use it to create improved forecasts relative to the forecasters discussed below.
Even still, the farmers in this model are highly simplified. For instance, we assume
that there is only one public forecast consumed by each farmer. In part, private be-
liefs proxy for any idiosyncratic forecasts that farmers might be receiving, but in
practice, sophisticated farmers might draw on many forecasts of stochastic processes
that influence their profit. We discuss extensions to the model along these lines in
Section 2.5. Recent research, however, also indicates that some farmers under-utilize
forecasts in making early season investment decisions [15]. A more complete analysis
would involve describing how and why the farmers might combine their idiosyncratic
information [3] as well as the objectives of the forecasters [6]. For example, the fore-
casters may be more interested in inducing a response from the agents (such as water
conservation) than in providing accurate forecasts.

2.2 Water

We are modeling an environment where all crops are watered by irrigation, so the
supply of water from rain is added solely to the stock of water from the previous
period. No farms receive direct rainfall. Suppose that annual rainfall, denoted Rt,
arrives according to

Rt = ζ + ξ1{t ≥ τ}+ εt, (3)
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where εt ∼ N(0, σ2
ε ).2 The term ξ1{t ≥ τ} denotes a structural change that occurs

at time τ and shifts the average rainfall by ξ < 0 for every period thereafter, where
1 is the indicator function. One can interpret τ as representing the date of the start
of a persistent drought. We consider only mean shifts in the rainfall process, which
is without loss of generality in this framework, but more complicated models might
attend to higher order moments of the rainfall distribution that could change during
drought or other weather extremes. For solution stability, we assume ζ < 1 and
ζ + ξ ≥ 0.

We further assume that time-varying demand is only due to the farmers and is

just equal to the fraction of farmers who plant: Dt = f(Ŵ f
t ). Thus, the water stock

evolves according to supply and demand each period.

Wt = Wt−1 +Rt −Dt. (4)

2.3 Forecasts

Because farmers use the forecasts when making their planting decisions, the forecast-
ing process plays a crucial role in determining the water level. We therefore consider
a variety of forecasts to examine their effects on the system. At the beginning of each
period, forecaster j makes prediction Ŵjt of water level at the end of time period t.
We will consider four types of forecasts: a “statistical” forecaster (j = a) who uses
standard time series tools to forecast the water level without any knowledge of the
underlying structure, an “economic” forecaster (j = b) who knows the demand pro-
cess but not the rainfall process, a “meteorological” forecaster (j = c) who knows the
rainfall process but not the demand process, and a fully structural forecaster (j = d)
who knows both the rainfall and demand processes.

The statistical forecaster has noticed that the evolution of Wt is well-approximated
by an autoregressive (AR) model of order 1, meaning that the forecaster estimates
the model

Wa,t = αa,t + ρa,tWa,t−1 + ua,t (5)

assuming ua,t is independent across t [8]. Here, α and ρ are coefficients to be estimated.
The forecaster updates the coefficients according to

(α̂a,t, ρ̂a,t) = argmin
α,ρ∈R2

t−1∑
n=1

(Wa,n − α− ρWa,n−1)2Kh1(t− n) (6)

where Kh1(t− n) is a kernel that down-weights past observations of data. For simu-
lation, we will use a commonly chosen exponentially decreasing kernel Kh1(t− n) =
e(−h1(t−n)). Thus, forecasts are based on the historical record of rainfall, with greater
weight placed on recent observations.

We will further assume that in this case, like the forecaster, the farmer does
not know the equation governing water supply. This assumption is made purely for
illustrative purposes so that the effect of fully versus partially sophisticated agents
can be explored. Because they do not know the water supply equation, farmers in this

case cannot improve on the forecast given to them by the forecaster, so Ŵ f
a,t = Ŵa,t.

3

2 Negative Rt can be interpreted as loss due to evaporation or a lack of rainfall relative
to exogenous urban demand, for instance. Forcing Rt > 0 can be done with some technical
complications that obscure our analysis.

3 Past water supply is publicly observable, so it might be possible to improve on the
forecast by using an alternative statistical model, but our point is not to compare alternative
statistical forecasting methods, so we will ignore that point here.
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If farmers had knowledge of the water supply equation, they could filter historical
rainfall from the water level and make their own inference on the future path of rain,
resulting in private forecasts equivalent to those issued by the economic forecaster,
to whom we turn next.

The economic forecaster has an exact model for the demand of the farmers and
knows the supply equation 4. This forecaster does not, however, know the physical
process governing rainfall and therefore must infer future rainfall from publicly ob-
servable, historical rainfall. Knowing supply and demand, the economic forecaster
models the evolution of water as

Wb,t = αb,t +Wb,t−1 − f(Ŵb,t) + ub,t (7)

where αb,t is an unknown parameter to be estimated and f(Ŵb,t) is given by (2). The
economic forecaster takes into account how the forecast itself will impact demand.
Specifically, given an estimate α̂b,t the economic forecaster chooses Ŵb,t to solve

Ŵb,t + f(Ŵb,t) = Wb,t−1 + α̂b,t. (8)

The forecaster updates α̂b,t according to

α̂b,t = argmin
α∈R

t−1∑
n=1

(Wb,n − α−Wb,n−1 + f(Ŵb,n))2Kh2
(t− n). (9)

We will use the same exponential kernel as in the statistical case, but with parameter
h2 chosen to match first period root mean squared error (RMSE) between the AR(1)
statistical forecast and the economic forecast for convenience of interpretation. In
this case, the forecaster possess the same information as the farmers, so again the
private forecast will coincide exactly with the public forecast, assuming that the
same statistical procedure is used to estimate rainfall.

The meteorological forecaster has a structural model for the physical side of this
system, so they know, up to noise, what will happen with the rainfall process this
season. Formally, they can predict the non-stochastic portion of rainfall, R̂t = ζ +
ξ1{t ≥ τ}, with certainty each period. This forecaster knows, however, that demand
influences the ultimate water level, so he or she tries to infer the missing component
by estimating

Wc,t = αc,t +Wc,t−1 + R̂t + uc,t (10)

by performing the following optimization each period

α̂c,t = argmin
α∈R

t−1∑
n=1

(Wc,n − α−Wc,n−1 − R̂n)2Kh2
(t− n). (11)

For a real-world example of this kind of correction to an otherwise structural (or, in the
terminology of climatologists, dynamical) model, see [4]. In this case, the public and
private forecasts will not coincide. Assuming that the meteorologist releases both a
water level forecast and a rainfall forecast, the farmers can use the rainfall forecast and
knowledge of the demand system to create optimal forecasts in a manner equivalent
to the structural forecaster discussed next.

Finally, by taking both the expectations of the farmers and the rainfall process
into account, a fully structural forecaster can produce a forecast that is exact up to
the irreducible noise in the rainfall process (εt). This forecaster knows that the true
process is

Wt = Wt−1 + R̂t + εt − f(Ŵt)
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and chooses Ŵd,t that solves,

Ŵd,t + f(Ŵd,t) = Wd,t−1 + R̂t,

yielding the same expression as in the case of the economic forecaster, but without
the need for inference on the rainfall process. This forecast will be used as a baseline
when comparing the quality of the three forecasters discussed above and provides the

forecast, Ŵ f
c,t, used by farmers in the case with meteorology forecasts.

2.4 Forecasting during a drought

We now consider how each forecaster performs when the physical system experiences
a drought. To perform these analyses, we simulate the model using the parameter
values given in Table 1.

Table 1. Simulation parameter values

parameter value

pA 2
A 1
K 1
γ 0.4
b 0.5
ζ 0.5
h1 1/3
h2 1/2

We examine a permanent drought that occurs after ten periods. In terms of Equa-
tion (3), at time τ = 10 this drought reduces rainfall by 30% (ξ = −0.15), on average,
each period. Figure 1 shows the forecasts of water level (dashed line) and actual wa-
ter level (solid line) each period for the four types of forecasters discussed above. In
each panel, the optimal forecast is shown with asterisks so that the forecasts can be
compared to the ideal.

Prior to the drought, the system is in equilibrium with the water level stable at
0.4, the profitability break-even point for farmers. The drop in rainfall should induce
some farmers to exit the market once they realize that they will not be able to provide
water for their crops. Indeed, one can see that in the fully structural case, Figure 1
panel (d), the system reaches a new equilibrium with a lower overall water level
after about 5 periods. This lower water level also reflects lower total farming. With
the optimal forecast, the forecaster is able to accurately predict the decline in water
use each period and, in fact, smooth the transition between drought and non-drought
states—a service that is potentially valuable to firms. This smoothness occurs because
water usage by farmers is appropriately conditioned by forecasts in anticipation of
future rainfall events.

The other cases each illustrate one or more forecasting failures. The statistical
forecaster, panel (a), shows the impact of a structural break (the change in the rainfall
process) coupled with incomplete knowledge of the underlying system. The forecaster
has some inertia in the forecast, so even after the rainfall shock occurs, this forecast
continues to predict a high water level, near the historical average. This optimistic
forecast causes too many farms to stay in business so that total water demand far



8 Will be inserted by the editor

The figure shows simulated forecasts and water levels in response to a rainfall shock
for the four types of forecasters discussed in Section 2.3, with (a) showing the sta-
tistical forecast, (b) showing the forecast with known demand, (c) showing the fore-
cast with known rainfall, and (d) showing the optimal forecast where both demand
and rainfall are known. The dashed black line in each panel shows the forecast,
the solid line shows the water level, and the asterisks show the optimal forecast.
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Fig. 1. Forecast performance during drought

exceeds the water supply, thus causing the water level to drop. In subsequent periods,
the forecaster updates his or her statistical model, incorporating this sudden drop in
water. Updating leads to a forecast of extremely low levels of water. This forecast
now turns out to be too pessimistic, since the low forecast will cause most farmers to
shut down, decreasing the demand for water. This type of behavior recurs multiple
times before the system finally settles down about 10 periods after the shock.

This case illustrates the large forecast errors that can occur if structural breaks
occur and agents are näıve about supply, but it is perhaps unreasonable to assume
that farmers do not know the structure of the water system. Panel (b) illustrates
the outcome when farmers are fully rational and sophisticated but still experience an
unknown structural break. Without knowing that the drought will hit, the forecaster
and farmers initially believe in an overly-optimistic forecast, causing excess demand
and a deep fall in the water level. Due to the exponential kernel, older rainfall observa-
tions are downweights, so eventually the pre-break rainfall data is no longer used for
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estimation, and forecasts match realizations. Since farmers and the forecaster know
demand, the forecast errors in this case are due to the break in the rainfall process
rather than feedback from expectations.

In contrast, the meteorological forecaster in panel (c) experiences forecast errors
that are purely due to feedback from expectations. Knowing the rainfall process,
the forecaster immediately revises the forecast down in expectation of the drought
arriving. This immediate revision, however, does not take into account the fact that
a lower forecast for rainfall will reduce demand. Indeed, the low rainfall forecast
causes such a broad shutdown of farms that the overall water level declines by less
than the forecast. This dynamic continues for multiple periods while the forecaster
incorporates the new demand data. One can see that even perfect knowledge of the
physical system can, in such a case, lead to a high degree of bias.

We have focused on a change in the rainfall process because comparison of the
meteorological and economic forecasts in this case offers a clear illustration of the
errors caused by expectation feedback. We could also consider changes in other ex-
ogenous model parameters. One of particular interest is an increase in price, which
would motivate more farmers to enter the market, increasing total demand for water.
In this case, the meteorological forecaster will again experience forecast errors due to
feedback, but in the opposite direction.

Price changes also highlight the role of a key simplification in the current model—
that the price of the agricultural good is exogenous to the quantity of the agricul-
tural good supplied. If the farmers being modeled represent a small enough part of
the overall market for the agricultural good, this assumption is plausible since these
farmers have a “negligible” effect on the overall supply and hence price of the good.
If this assumption is deemed implausible, we would need to estimate the demand
curve, which relates the price and quantity of the agricultural good. Different pre-
dictions can emerge depending on the slope of the demand curve. If a small decrease
in quantity of the agricultural good leads to a large increase in price, a drought can
theoretically cause more farmers to plant crops during a drought. The intuition for
this result is that expected profits for a farmer depend both on the probability of a
successful harvest and the price when the harvest is successful. The drought makes it
less likely for the harvest to be successful, but a farmer might reason that the price
will be higher during a drought because other farmers’ crops may fail, so total supply
of the good will fall and the price will rise. If the price is high enough, a farmer might
then intensify his planting in the presence of a drought.

Empirically, price changes and weather shocks can combine to produce unexpected
outcomes. For instance, in the mid-1900s, technological advancement led to cheaper,
more widely available ground water in the Midwest of the United States. This change
increased the available supply of water, reduced the price of producing agricultural
goods, and potentially provided a back-stop supply of water in case of prolonged
drought. Farmers reacted to these changes by adding new farmland and using less
drought-resistant crops, leading to a zero net change in the ability of farmers to cope
with drought [9].

2.5 Comparing forecast quality

Figure 1 implicitly compares each forecast to the optimal structural forecast. We
can also assess forecast quality more formally from a statistical perspective. The
main point of our analysis is that even with sophisticated agents and forecasters
who accurately forecast the underlying physical system, feedback can lead to forecast
errors. Figure 2 panel (a) summarize this error by calculating the squared error each
period for the statistical, economic, and meteorological forecasts and then taking the
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Panel (a) shows period-by-period RMSE for each of the non-structural forecasts. Panel (b)
shows the cumulative value of the RMSE in the first panel, starting at the date of drought on-

set.
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Fig. 2. Statistical and economic performance of the forecasts

square root of the average of the squared error across simulation draws. The resulting
value can be interpreted as a root mean squared error of each forecast.

One can see that during the initial period after drought onset, both the economic
and statistical forecaster perform relatively worse than the meteorologist. After one
period of high error, the economic forecaster does progressively better, but the sta-
tistical forecaster continues to experience high and variable forecast performance. By
construction of our exponential kernals, 10 to 20 periods after the shock, all forecasters
cease to experience substantial errors.

In terms of cumulative error, Figure 2 panel (b) shows that in the long run, the
economic and meteorological forecasters perform equally well. Since the economic
forecaster only experiences a structural shock, this equivalence implies that forecast
feedback can be as bad for forecast errors as the much more widely studied topic of
structural breaks. In the presence of multiple forecasts of potentially differing quality,
a modelling approach as in [7] could potentially be taken. For simplicity we consider
forecasts and water level dynamics under differing forecasting regimes rather than
with competing forecasters.

The non-structural forecasters in our model are each constrained in ways that lead
to forecast errors. How reasonable are these constraints? In practice, many forecasts
exhibit persistent bias even in cases where expectation feedbacks are not present
and where there is some understanding of how to predict the underlying physical
system. A previously mentioned example is forecasts of El Niño/Southern Oscillation
(ENSO). Although the first skillful ENSO forecast was published in 1986, forecast
bias was still present 14 years later [2,4]. Daily precipitation forecasts issued by local
meteorologists have also been shown to exhibit substantial bias toward predicting
more rainfall than actually realized. Notably, some of the same bias is also present in
national forecasts made by the Weather Channel, a fact documented by researchers
and popularized by Nate Silver [1,18]. The Weather Channel has the largest market
share of any consumer forecasting service in the United States [10]. Finally, in the
context of the model, forecasts issued by NOAA failed to anticipate the onset of the
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current drought in California and the western United States.4 Lack of predictability
of onset is common to multiple drought forecasting models [21].

Other cases exhibit both forecast bias and the potential for feedback. A well stud-
ied example comes from electricity supply forecasts issued by the North American
Electric Reliability Council (NERC). From 1974 to 1981, the NERC issued projec-
tions of national electricity supply that were invariably too high [12]. The Federal
Reserve’s Greenbook forecasts of economic growth have also been shown to exhibit
consistent bias [13]. In an example combining both physical systems and feedbacks
similar to those used in the model, rapid warming in the New England cod fishery com-
bined with a failure to correctly predict fish stock led to consistently over-optimistic
stock forecasts and the collapse of the fishery [14]. It is unclear whether forecast bias
in each of these cases is due to expectation feedback, an objective function of the
forecaster that trades bias for other forecast characteristics, or some other factor, but
differentiating between these different sources of error would be a potentially fruitful
empirical exercise.

Finally, it is important to note that forecast error and economic loss need not be
the same or even similar. In our simple model, even though the meteorological forecast
is systematically biased downward as shown in Figure 1 panel (c), the path of realized
water level is exactly that of the optimal forecast. In the model this occurs because
we assume the agents are sophisticated enough to predict demand. Thus, the agents
combine their own information with the forecast level of rainfall to attain all the
information they need. The forecast of water level is systematically biased, but this
comes at no cost to the agents relative to the optimal forecast. In practice, demand
depends on many factors outside the purview of agents and thus will be forecasted
imperfectly. In that case, agents might experience economic losses even with perfect
meteorologic forecasts.

3 Conclusion

Climate change is expected to lead to more frequent and more intense weather ex-
tremes. Physical scientists are hard at work to improve our ability to forecast these
events. Social scientists are similarly engaged in efforts to understand how individuals
will react to these extremes. How individuals will respond to ever-improving forecasts,
and what that implies about the ultimate accuracy and impacts of those forecasts, is
an open question.

In this paper, we have developed a highly simplified model of an agricultural
setting to illustrate what happens when the actions of economic agents respond to
forecasts about physical systems and how that, in turn, influences the accuracy of
model predictions under a variety of forecasting scenarios. The key insight from our
analysis—that feedback between forecasts and agent expectations can render forecast
invalid ex post—should extend to a wide range of real world settings, including those
outside the realm of climate extremes.

For example, forward guidance on interest rates in financial markets shapes saving
and investment decisions that can impact equilibrium costs of borrowing. Similarly,
biological stock assessments can impact resource extraction and thus the population
dynamics of the species of interest. Even forecasts at small temporal scales, such as
that of electricity production can impact price expectations and thus capital invest-
ments and long-term energy demand by consumers. Assessing the degree to which
expectations are incorporated in forecasts in these sectors and improvements to fore-
casts that do not incorporate expectations offer rich areas for future research. Greater

4 See the forecast verification from the onset of the drought here: http://www.cpc.ncep.
noaa.gov/products/expert_assessment/sdo_verification/2011/NDJ11-initial.png
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collaboration between social and physical scientists is needed to deepen our under-
standing of forecast consumption, expectation formation, and the ways in which those
expectations may alter the dynamics of systems critical to societal health and well
being.

Shrader gratefully acknowledges support from California Sea Grant College Program, Project
No. E/MRE-8 and the National Science Foundation Graduate Research Fellowship under
Grant No. DGE-1144086.
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