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Abstract

Global weather forecasts are of great economic value for society, but geographical
differences in forecast accuracy can create new—and potentially exacerbate existing—
economic inequalities. Regional differences in forecast accuracy are particularly rele-
vant if weather forecasts are considered as an important tool to help reduce the negative
effects of future climate change such as mortality from extreme temperature events. In
this paper, we provide a comprehensive global analysis of the accuracy of short-term
numerical weather predictions of temperature and relate our findings to both existing
economic inequalities and inequities in global weather monitoring infrastructure. We
report three main results: First, temperature forecasts are currently substantially more
accurate in high income countries than in low income countries. A seven-day-ahead
forecast in a high-income country is on average more accurate than a one-day-ahead
forecast in a low income country. Second, while forecast accuracy has improved steadily
between 1985 and the present—with the largest increases in the 1990s—there is a per-
sistent gap between high income and low income countries. Third, the infrastructure
for weather observations is highly unequally distributed across countries, with fewer
land-based weather stations and radiosondes in poorer countries. These inequalities
grow even larger when lower reporting rates are taken into account. Remedying these
differences in infrastructure would help close the forecast accuracy gap.

1 Introduction

Weather forecasts provide a wide variety of benefits to society, including protecting lives,

aiding responses to extreme weather, and improving labor productivity (Shrader et al., 2023;

Anand, 2022; Song, 2023). The value of these benefits is large, with recent estimates of the

monetized economic benefits from accurate weather forecasts exceeding multiple times their

production costs (Shrader et al., 2023). The value of weather forecasts critically depends

on their accuracy (Leviäkangas, 2009). This accuracy is routinely assessed by international

and national meteorological and hydrological services (NMHS), but the results are included
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in technical reports (e.g. Haiden et al. (2021)) which are primarily intended for an expert

audience and focus on technical improvements to forecasts rather than the socioeconomic

dimension of forecast accuracy (Casati et al., 2008). As a result, outside a small community,

little is known about how forecast accuracy is temporally and spatially distributed. This

is potentially problematic, because inequalities in accuracy may have large socioeconomic

implications. Here we provide the first comprehensive analysis of global inequalities in nu-

merical weather predictions. We focus on short-range temperature forecasts that are highly

relevant for economic decision making and for adaptation to climate change, especially for the

reduction of temperature-related mortality (Carleton and Greenstone, 2022; Shrader et al.,

2023).1

Overall, we find large inequalities. Poorer countries generally experience lower forecast

accuracy across all forecasting horizons. Furthermore, we find that from 1985–2020, the gap

between high-income and low-income countries has only marginally decreased. Mirroring—

and potentially underlying—the pattern in forecast accuracy, we find that the density of

weather observing infrastructure also exhibits substantial inequality. Land-based stations

and radiosondes tend to be more common in richer countries. These inequalities in infras-

tructure are further exacerbated by lower reporting rates in poorer countries. Infrastructural

inequities do not tell the whole story, however. Poorer countries also have lower capacity to

translate global numerical weather predictions into local forecasts, suggesting that our results

using numerical weather predictions underestimate the differences in quality in official fore-

casts. Finally, we report evidence from numerical experiments that show that the benefits

of additional observations will be particularly large in regions where observations are cur-

rently relatively sparse, suggesting that reducing the gap in the global weather observation

infrastructure can help close the gap in forecast accuracy.

For our analysis we combine several large datasets. They include a global dataset of daily

forecasts of temperature and surface pressure from the digital archives of the ECMWF from

1985-2020 (ECMWF, 2023) and a global dataset on daily land-based station observations

for the same time period from NOAA (Smith et al., 2011). We combine these meteorological

data with economic data from the World Bank to examine the economic dimension of existing

inequalities (World Bank, 2023). For the analysis of the observation infrastructure, we also

use global datasets of land-based weather stations (Smith et al., 2011) and of radiosondes and

pilot balloons (Durre et al., 2016), as well as a global dataset of drifting sea bouys (Lumpkin

and Centurioni, 2010), all provided by NOAA. Together our data cover the most important

components of the global in-situ weather observation infrastructure (Haiden et al., 2021).

1We also examine inequality in the forecast accuracy of air pressure—a variable that is more commonly
used to evaluate numerical weather prediction skill—in supplementary results. See Figure S3.
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No prior work has specifically examined the economic dimension of the distribution of

forecast accuracy. Routine verifications usually focus on global averages or specific parts of

the world, such as the extratropics, or they provide results with coarse spatial aggregation,

such as the Northern and the Southern Hemispheres (Haiden et al., 2021). Related prior

research also differed in other ways from our study. For example, prior work focused only on

trends over time (Magnusson and Källén, 2013), used coarse spatial aggregation or excluded

parts of the world (Bauer et al., 2015), focused on longer forecast horizons (Barnston et al.,

2010) which might not be as valuable for economic decisions (Millner and Heyen, 2021a),

and generally focused primarily on atmospheric pressure (Bauer et al., 2015) and sometimes

rainfall (Wheeler et al., 2017). The first part of our analysis is closest to de Perez et al.

(2018), who study the predictability of temperature extremes in different parts of the world

but focus on forecast horizons of 3 days or more and do not overlay forecast accuracy with

any economic variable.

2 Results

We first examine the spatial distribution and temporal evolution of forecast accuracy. We

focus on air temperature at two metres because of its relevance for many socioeconomic

outcomes (Carleton and Hsiang, 2016), but in robustness tests we also analyse forecasts

of surface pressure. Furthermore, we focus on 1-day-ahead forecasts because of their high

relevance relative to forecasts with longer horizon (Millner and Heyen, 2021b), especially

for avoiding mortality from temperature (Shrader et al., 2023), but we also show results for

forecast horizons up to 7-days-ahead. We quantify forecast accuracy using the correlation

of anomalies, a measure frequently used for forecast verification. Our main stylised fact

about the spatial distribution of forecast accuracy are similar if we quantify accuracy using

the correlation of levels, or if we use the root mean squared error relative to a measure of

variability. We primarily combine forecasts from the ECMWF and a global dataset of surface

stations focusing on daily forecasts and observations for 0 UTC and 12 UTC. In additional

analysis we show robustness of our main finding to using forecasts from NOAA (GFS) and

we also compare with a verification based on model analysis instead of station observations

(see Methods for more details).

Our analysis reveals substantial inequality in forecast accuracy. Forecasts generally tend

to be less accurate in tropical countries, but countries at high latitude in the Northern

Hemisphere also exhibit low accuracy (Figure 1a). Inequality is also apparent on economic

dimensions. Richer countries exhibit, on average, more accurate forecasts (Figure 1b), with

median forecast accuracy rising monotonically across high versus low income country groups.
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These inequalities exist at all forecast horizons from 1 to 7 days ahead with differences

between income groups slightly decreasing at the longest forecast horizons (Figure 1c). The

differences between income groups are large. For example, 1-day-ahead forecasts in low-

income countries tend to be worse than 7-days-ahead forecasts in high-income countries

(Figure 1c).

We conduct a large number of robustness tests to corroborate these stylised facts. We

find that the overall pattern—higher forecast accuracy in richer countries—is robust to using

a different way of aggregating results from individual stations to countries (SI Figure S2b;

see Methods for details), restricting the station data to stations with continuous reporting

between 1985 and 2020 (SI Figure S2c), using forecasts from the Global Forecast System

(GFS) of NOAA instead of the ECMWF (SI Figure S3a), and using forecasts of surface

pressure instead of air temperature (SI Figure S3b).

Numerical weather predictions have improved substantially between 1985 and 2020 for

all income groups (Figure 2a); an important global success story for weather forecasts. But

there has been—and remains—a persistent gap in forecast accuracy between rich and poor

countries (Figure 2a,b). For example, the gap in anomaly correlation between low income

and high income countries during the 1991–2000 period was 0.15. It decreased by 0.04

points between then and the 2011–2020 period, but is still around 0.11 points. Over the

same time period, high income countries experienced an increase in accuracy of 0.15 points

(Figure 2b). We find relatively small accuracy gaps between the Northern and Southern

Hemispheres in our data (Figure 2c), though again the gap that does exist is persistent.

Focus on hemisphere-level analysis, however, misses a large and persistent gap in forecast

accuracy between the tropics and extratropics that partly explains the inequality results we

find (Figure 2d).

Contrary to earlier work (Bauer et al., 2015) we do not find evidence for a substantial

convergence in forecast accuracy between the Northern and Southern Hemispheres. A more

detailed comparison suggests that the earlier evidence for convergence can partially be ex-

plained by the verification method (SI Figure S4), which evaluated forecasts using model

analysis instead of station observations, with the perceived convergence between the North-

ern and Southern Hemisphere being potentially a consequence of weather forecasts and the

associated analysis becoming more similar without proportional improvements in forecast

accuracy relative to station observations. We conjecture such a pattern may be related to

an increased and better assimilation of satellite data.

Having established these stylised facts about inequalities in forecast accuracy, we next

examine inequalities in the infrastructure that contribute to them. We use the same global

dataset of land-based stations but focus on stations that reported surface pressure, because
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Figure 1. The accuracy of weather forecasts is unequally distributed across coun-
tries; it tends to be higher in countries with higher GDP per capita. All figures
are based on a verification of daily forecasts from the ECMWF of air temperature in 2 me-
tres above ground with land-based station observations. Forecast accuracy is quantified as
correlation of anomalies. Forecast horizon in a and b is 1-day-ahead. Mean values over the
period 2011-2020. a. Map of the geographical distribution of forecast accuracy. b. Scatter
plot and linear fit with 95% confidence intervals of forecast accuracy and log Gross Domestic
Product (GDP) per capita in purchasing power parity (PPP). Colours indicate country in-
come group of the World Bank in 2020. Boxplots show median values, interquartile ranges,
and full ranges. c. Median forecast accuracy for different forecast windows. See SI Figure
S1 for a map of country income groups.
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Figure 2. Forecast accuracy has improved over time, but persistent gaps between
richer and poorer countries remain. Based on the same data as Figure 1. Forecast
horizon is 1-day-ahead. a. Timeseries of forecast accuracy for different country income
groups using a five-years moving average. b. Forecast accuracy by country income group
and by time period. c. Forecast accuracy by hemisphere (NH = Northern Hemisphere, SH
= Southern Hemisphere) and by time period. d. Forecast accuracy by world region (tropics,
extratropics) and by time period.
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this variable is more widely assimilated in global forecast models than air temperature at

two metres (Haiden et al., 2018). Furthermore, we use a global dataset of radiosondes and

a global dataset of drifting sea buoys (see Methods). We choose these three types of in-situ,

surface-based meteorological observations because of their relative importance for forecast

accuracy (Kull et al., 2021). From all three datasets, we extract the locations as well as the

frequencies of observations between 2011 and 2020.

We find that the infrastructure for land-based stations and radiosondes is highly unequally

distributed (Figure 3a,b). For both types of observations, richer countries tend to exhibit

a larger density of observations per land area than poorer countries (SI Figure S8a,b). For

drifting sea-buoys, there seems to be no significant statistical association between GDP per

capita and the number of sea buoys within 1,000 km of coastal areas (SI Figure S8c).

These inequalities in observations become even larger when we also account for differences

in reporting frequencies (Figure 4a,b). If we compare the medians of the average reporting

frequency of countries in different income groups, we find that weather stations in high-

income countries tend to report more than twice as frequently at 0 UTC and 12 UTC than

stations in low-income countries (Figure 4a). For radiosondes, which typically ascend and

report either 1 or 2 times per day—and in some places up to 4 times per day—we find a

weaker statistical association between income and reporting rates, but high-income countries

again exhibit the highest reporting frequency (Figure 4b).

More observations generally tend to increase forecast accuracy, but the effect of an addi-

tional observation is highly dependent on the existing density of observations in a location

(Figure 4c). To illustrate this, we present the results of experiments by the UK MetOffice

(Kull et al., 2021) which quantify the contribution of surface-based observations to global

forecast accuracy. According to these experiments, the average surface observation has an

impact of only 0.3 in Europe and 0.6 in North and Central America, but 1.6 in Asia, 2.3 in

Africa, and 3.6 in South America (all numbers as absolute values in 10e-6 J per kg; Figure

4c). These numbers quantify the impact of observations on a global measure of forecast

accuracy. For a similar local measure of accuracy, the discrepancies are likely even larger

(Kull et al., 2021).

Differences in the accuracy of the predictions of global numerical weather models will

propagate to official local forecasts issued by national agencies, where the inequalities in

model results are potentially exacerbated by differences in institutional capacity between

rich and poor countries. To examine inequalities in the issuance of official forecasts by

national agencies as a proxy for institutional capacity, we download official national weather

forecasts for countries’ capitals that are reported to and disseminated by the WMO. The

results again show large inequalities between rich and poor countries: about 80% of high-
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Figure 3. The infrastructure for meteorological observations is unequally dis-
tributed across countries.. Based on data on land-based weather stations as well as
radiosondes from NOAA. All figures show locations that reported at some point 2011-2020.
a. Map of the density of land-based weather stations that reported sea-level pressure. b.
Map of locations of radiosondes. See SI Figure S8 for scatter plots of observation density
and log GDP per capita of countries.
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Figure 4. Reporting rates of the observation infrastructure and the institutional
capacities of national meteorological agencies exacerbate inequalities between
countries; individual observations have a higher impact where there are fewer
of them. a. Reporting rates of land-based stations at 0 UTC and 12 UTC (mean of 2011-
2020). Violin plots show distribution of countries, dots indicate medians, boxes interquartile
ranges, and lines 95 percent of values. b. Reporting rates of radiosondes (mean 2011-2020).
c. Scatter plot of results of simulations on the impact of individual observations on forecast
accuracy as reported in Kull et al. (2021). d. Percentage of countries that report an official
national forecast for the capital to the WMO.
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income countries report an official forecast for their capital to the WMO, but only about

20% of low-income countries do so.

3 Discussion

In this study we examine the spatial variation in the accuracy of weather forecasts and in

the physical infrastructure and reporting rates of meteorological observations. To illumi-

nate the socioeconomic implications of existing inequalities, we combine numerical weather

predictions, meteorological observations, and economic data and examine the relationship

between these different variables. The paper focuses on air temperature because of its rele-

vance for population health (Gasparrini et al., 2015; Carleton et al., 2022), economic output

(Katz and Lazo, 2011), and because forecast accuracy might play an important role in mit-

igating climate change impacts (Shrader et al., 2023). Our work differs from operational

forecast verification reports of meteorological agencies and the prior peer-reviewed literature

with its detailed analysis of the economic dimension of forecast accuracy and its analysis of

inequalities in weather observation infrastructure and reporting rates.

Our results reveal large and persistent inequalities in forecast accuracy between rich and

poor countries. In additional analysis, we find similar patterns for the observation infras-

tructure and reporting rates, but we are not able to attribute differences in forecast accuracy

to differences in observations. Specifically, large differences in forecast accuracy between the

tropics and extratropics can explain a large share of the differences between rich and poor

countries and are likely also due to fundamental differences in the predictability of weather

(Goddard et al., 2001; Zhang et al., 2019). However, in some additional analysis we find that

even within the tropics, poorer countries tend to exhibit worse forecasts. Furthermore, while

we are not able to quantify the importance of observations in this paper, we report the results

of prior experiments (Kull et al., 2021) (in Figure 4c) that show meteorological observations

are particularly valuable in locations with lower observation density. Beyond that specific

study, similar computationally demanding assessments, also referred to as data-denial ex-

periments or observing system experiments (Kelly et al., 2007; Bormann et al., 2019), are

routinely conducted by meteorological agencies. While the results of such experiments tend

to agree that satellite images have become the most important source of information, they

also suggest that the three types of observations examined here (land-based stations, ra-

diosondes, and drifting buoys) are important determinants of forecast accuracy (Kull et al.,

2021). Their importance is generally found to be largest for shorter forecast horizons and

for locations with fewer observations.

An ethical evaluation of the large inequalities in forecast accuracy and observation in-
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frastructure is beyond the scope of this paper. However, existing international initiatives

suggest that these inequalities have been identified as problematic by some actors. Initia-

tives such as the Systematic Observations Financing Facility (SOFF) appear well designed

to reduce some of the inequalities in physical infrastructure. Our results suggest that sup-

porting more consistent reporting from existing infrastructure can also be a useful way to

reduce inequality.

Closing the gap in forecast accuracy is especially important given evidence that poor

countries are expected to experience relatively larger damage from increases in mean tem-

perature (Burke et al., 2015; Carleton et al., 2022) and weather variability (Linsenmeier,

2023). Previous research in high-income countries has shown that short-horizon forecasts

can be helpful for reducing the damage from temperature shocks (Shrader et al., 2023), and

seasonal weather forecasts have shown promise for helping reduce risks to agriculture around

the world (Meza et al., 2008).

Investments in better meteorological observations in developing countries by developed

countries may of course not only be justified based on their local effects, but will also increase

forecast accuracy globally. Encouragingly, our results suggest that some inequalities can

already be reduced by increasing the frequency of data gathering and dissemination at sites

with existing infrastructure (Ingleby, 2015; Dinku, 2019). Furthermore, the benefits of better

observations extend beyond more accurate operational global weather forecasts and include

more valuable disaster early warning systems (Tzachor et al., 2023), more accurate locally

downscaled seasonal and decadal climate predictions (Bruno Soares et al., 2018), a higher

quality of the data used to understand the impacts of weather on socioeconomic outcomes

(Auffhammer et al., 2013), and more generally a better scientific understanding of the status

quo and changes in weather and climate.
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Methods

Data

Weather forecasts

We use daily weather forecasts from the European Center for Medium-Range Weather

Forecasts (ECMWF) from 1985–2020 (ECMWF, 2023). The ECMWF forecast is widely

considered to be the most accurate global, numerical weather forecast. We focus on the

validity time 12 UTC and download all weather forecast initialised 0, 24, 48, 72, 96, 120,

144, and 168 hours before a given date, which we refer to as “X-day(s)-ahead” forecast (X

= 1 for 24 hours, X = 2 for 48 hours, etc.). The forecast initialised at the time of validity is

also referred to as analysis. We use this analysis as an alternative to station observations for

verification of the forecast. As a robustness test, for some years we also download forecasts

with the validity time 0 UTC and find essentially identical results.

Land-based stations

We combine these forecasts with the world’s largest dataset of historical meteorological

observations from land-based measurement stations from NOAA (Smith et al., 2011). We

use the station data for the verification of the forecast and for an analysis of inequalities

in the observation infrastructure. For the verification, we use all stations that reported

temperature at 2 metres. For the analysis of observation infrastructure, we use all stations

that reported sea-level pressure because in contrast to air temperature this variable has

always been assimilated in the ECMWF forecasts.

For the examination of mean differences between countries over the period 2011-2020

we use all available stations. For the examination of trends, we select only those stations

that reported at least once every year between 1985 and 2020. To match forecasts with

station observations, we identify—for every year and for every station—the grid cell of the

gridded forecast data that is closest in space based on the coordinates of the station and the

coordinates of grid cell centroid.

Radiosondes and pilot balloons

For radiosondes and pilot balloons we use the Integrated Global Radiosonde Archive from

NOAA (Durre et al., 2016). We extract all historical locations from the metadata file and

process the raw data with actual observations to identify the number of ascensions for every

location for every year.

Drifting sea buoys

For drifting sea buoys, we use the archive of NOAA’s Global Drifter Program (Lumpkin

and Centurioni, 2010). For every buoy, we calculate its monthly mean coordinates and then
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aggregate all buoys to ocean hexagons by counting the mean number of buoys in every

hexagon in every year. We then select all coastal land hexagons and for every year calculate

the mean number of buoys using all ocean hexagons within 1000 km based on centroid-to-

centroid distances.

Economic data

We combine our meteorological data with economic data from the World Bank (World

Bank, 2023). For national income, we use data on GDP per capita in purchasing power

parity in constant 2011 international USD. For country income groups, we use the official

World Bank classification from 2020. For population, we use the Gridded Population of the

World dataset in its highest spatial resolution in version 4 for the year 2020.

Statistical methods

Forecast accuracy

For the verification of forecasts, for every station and every year we calculate the cor-

relation of the anomaly of the forecast with the anomaly of the observation. We calculate

these anomalies by subtracting the climatological mean value of the period 1991-2020. The

use of anomalies avoids that locations with large seasonality tend to have larger correlations

simply because of that seasonality. The climatologies are obtained from ERA5 reanalysis

(Hersbach et al., 2020) using the closest grid cell of each station. We also use this clima-

tology to calculate—for every station—a climatological between-year standard deviation of

the period 1991-2020. We use this standard deviation to identify possibly erroneous station

measurements. Specifically, we ignore all station observations that deviate by more than five

standard deviations from the forecast.

Aggregation from coordinates to countries

We use two different ways of aggregating forecast accuracy from individual stations to

countries. In our main specification, we first average all stations in the same hexagon and

then for every country calculate a weighted average of hexagons using the population residing

inside the hexagon as weights. The use of population as weight is primarily motivated by

the existence of few countries with large landmasses where large areas are very sparsely

populated, such as Russia and Canada. For robustness, we do not weigh by population and

instead assign all hexagons within a country equal weight. The results are essentially the

same (SI Figure S3).
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Supplementary Information (SI)

Figure S1. Map of countries and income groups. Income groups are shown in different colour.
Income groups are from the World Bank classification in 2020.
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Figure S2. Scatterplot of forecast accuracy and log GDP per capita of countries for different
ways of aggregation and for different samples of stations. Figure a is identical to Figure
1b. Figure b shows results aggregated from stations without the use of population weights.
Figure c shows results with the population weights, but only based on subset of stations with
continuous reporting between 1985-2020. Figure d shows results without population weights
and only for the subset of stations in c.
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Figure S3. Scatterplot of forecast accuracy and log GDP per capita of countries for different
weather forecast models and for different meteorological variables. The reference is Figure
1b, which shows the same as SI Figure S2a. a. Forecast from GFS instead of ECMWF. b.
Forecast of surface pressure instead of air temperature in 2 metres. Shaded areas show 95%
confidence intervals obtained from heteroscedasticity-robust standard errors.

1990 1995 2000 2005 2010 2015
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fo
re

ca
st

 a
cc

ur
ac

y
(c

or
re

la
tio

n 
of

 a
no

m
al

ie
s)

Hemisphere
NH, 1 days ahead
NH, 2 days ahead
SH, 1 days ahead
SH, 2 days ahead

1990 1995 2000 2005 2010 2015
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fo
re

ca
st

 a
cc

ur
ac

y
(c

or
re

la
tio

n 
of

 a
no

m
al

ie
s)

Hemisphere
NH, 1 days ahead
NH, 2 days ahead
SH, 1 days ahead
SH, 2 days ahead

Figure S4. Timeseries of forecast accuracy by hemisphere and by forecast horizon for two
alternative verification methods. Verification based on: a. Station observations, b. Model
analysis. Both figures show five-years moving averages. NH = Northern Hemisphere, SH =
Southern Hemisphere.
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Figure S5. Improvements in forecast accuracy over time by forecast horizon. a. and b.
Improvements by hemisphere (NH = Northern Hemisphere, SH = Southern Hemisphere). c.
and d. Improvements by region (tropics, extratropics). See also Figures 2c and 2d.
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Figure S6. Maps of the observation infrastructure. a. Location and reporting frequency of
land-based weather stations. b. Location and reporting frequency for radiosondes. All maps
are generated from data from NOAA over the years 2011-2020.
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Figure S7. Map of the drifting sea buoys. The figure shows the average number of buoys
per hexagon based on data from NOAA over the years 2011-2020.

6



7 8 9 10 11
log GDP pc PPP

12

11

10

9

8

7

6

lo
g 

De
ns

ity
 o

f s
ta

tio
ns

BDI

CAF
CODSOM
NER

MOZ
MWI
MDG
LBR
SLE

TCD

GNB

ETH

RWA
TGO

BFA

KIR

GMB

MLI

AFG

UGA

GIN
ZWETZA

LSO

SLB
BEN

VUT

TJK

SENHTI

COM

NPL

ZMB

FSM

CMR

KHMPNG

STP

MMR

KEN

DJI

CIV
COG

BGD

SDN

PAKGHA

KGZ

MRT

NGA

HND
NIC
IND

TONWSM

CPV

UZBLAOMAR

PHL

AGO

BOL

SWZGTM

SLV
VNM

BLZ

IRQ

JAM

NAM

EGYIDN

JORTUN

MDA

MNG

ECU

DZA

FJI
ARM

PER

DMA

ALB

GUY

UKR

TKM

LKABIH

PRY

GEO

CHNZAF
COL

BWA

AZE

GABIRN

LCA

BRA

MKD

DOMTHA
SRB

PLW

LBN

SUR

MNE

BLR

CRIMEX

BGR

MUS

LBY

URY

ARG

GNQ
CHLKAZMYS

ROU

TUR

HRV

RUS

SYC

LVA
TTO

PAN

HUNGRCPOL
SVK
LTUPRT
ESTBHS

PRISVN

OMN

CZE

CYP

ESPISR

KOR
JPN

NZL

ITA
FRA
GBR

SAU

FIN

CAN
AUS

BEL

SWE
DEU
ISL

KWT
AUT
DNKNLD

HKG

USA

BRNNOR

ARE

CHE

IRL

QAT
LUX

7 8 9 10 11
log GDP pc PPP

14

12

10

8

6

lo
g 

De
ns

ity
 o

f r
ad

io
so

nd
es

CAF
NER

MDG

TCD
ETH

TGO

BFA

MLI

AFGUGA
ZWE
TZA

BEN

VUT

SEN

COM

FSM

CMRPNG
MMRKEN

CIVCOG

BGD

SDN

PAK

MRT
NGA

HND

IND

CPV

MAR

PHLVNM
BLZ

IRQ

JAM

NAM
EGY

IDN

JOR
TUN
MNG
ECU

DZA

FJI
ARM

PER

UKR

TKM

LKA

PRY

CHN
ZAFCOL
BWA

AZE
IRN
BRA

THASRB
BLRCRI

MEXBGR

MUS

LBY

ARG
CHL
KAZ

MYS

ROUTUR

HRV

RUS

SYC

LVA

TTO

PAN
HUNGRC
POL
SVKLTU
PRTEST

BHSPRI
SVN

OMN

CZE

CYP

ESP

ISRKOR
JPN
NZLITA
FRA
GBR

SAU

FIN

CAN
AUS

BEL

SWE

DEU
ISL

KWTAUT
DNK
NLD

HKG

USA

BRN

NORARE
CHE
IRL

SGP

7 8 9 10 11
log GDP pc PPP

9

8

7

6

5

4

3

lo
g 

Nu
m

be
r o

f b
uo

ys
 

wi
th

in
 1

,0
00

 k
m

 o
f c

oa
st

al
 h

ex
ag

on
s

COD

SOM

MOZMDG

LBRSLE

GNB

ETH

TGO

GMB

GINZWE
TZA

SLB

BEN
VUTSEN

HTI

COM

TLS

CMR
KHM

PNG

MMR

KEN

DJI

CIVCOG

BGD

SDN

PAK

GHA

MRTNGA
HND
NIC
IND
WSMPSECPV

LAO

MARPHL

AGO

SWZ

GTM

SLVVNM

BLZ

IRQ

JAM
BTN
NAM

EGY

IDN

JOR

TUN

MDA

ECU

DZA
FJI

PER

DMA

ALB

GUY

UKR
TKM

LKA
BIH

GEO

CHN
ZAF

COL

AZE

GAB

IRN

BRA
MKD
DOM
THA

SRB

LBN

SUR
MNECRIMEX

BGR

LBYURY

ARG

GNQ
CHL

KAZ

MYS
CUW

ROU

TURHRV

RUS

LVA

TTO
PAN

GRC

POL
LTU

PRT

EST

BHS

PRI

SVN

OMN

CYP

ESP

ISR
KOR
MLT
JPN
NZL
ITAFRAGBR

SAU

FINCANAUS

BHR

BEL

SWE

DEU

ISL

KWT

AUT

DNK
NLD

HKG

SMR
USA

BRN

NOR

ARE

CHE
CYM

IRL

SGP

QAT

Figure S8. a. Scatter plot of the log density of land-based weather stations and log GDP
per capita of countries. b. Scatter plot of the log density of radiosondes and log GDP per
capita of countries. c. Scatter plot of the log number of drifting sea buoys within 1,000 km
of coastal hexagons and log GDP per capita of countries. Shaded areas show 95% confidence
intervals obtained from heteroscedasticity-robust standard errors.

7


	Introduction
	Results
	Discussion

