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Abstract

Science funding agencies are often criticized for being too conservative. One explana-
tion is that agencies typically base decisions on a simple average of peer review scores.
Using a discrete choice experiment conducted with a large sample of biomedical re-
searchers, we find that scientists prefer to fund projects with more reviewer dissensus.
In contrast to funding allocation rules that focus primarily on the first moment of the
distribution of reviewer scores, they also value the second moment. Scientists with
the greatest domain expertise are particularly enthusiastic about dissensus. Using
scientists’ preferences changes funding decisions for projects worth billions of dollars
annually. (JEL: O31,O32,O38)
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1 Introduction

Fundamental scientific knowledge and the technologies built on it significantly contribute

to aggregate income and economic growth (Nelson and Phelps 1966; Lucas 1988; Romer

1990; Aghion and Howitt 1992; Mokyr 1992). The public-good nature of basic scientific

discovery implies that the government should play a prominent role in its funding, which

should, in turn, catalyze private-sector investments in applied science (Arrow 1972; Nelson

1959; Bush 2020). Indeed, the U.S. federal government invested more than $95 billion into

science funding in 2021 alone (National Science Foundation (NSF) 2023), with the vast

majority allocated based on some form of peer review process.1 Peer review of research

proposals is likewise the cornerstone of governmental research allocation decisions across the

globe (Whitley and Gläser 2007), as well as grant awards from science-based philanthropic

organizations2 and firms’ internal R&D decisions (Miller 1995). Peer review of research

proposals is quite distinct from the journal peer review process with which we are all familiar.

Most notably, reviewers are tasked with evaluating the potential success of early stage ideas

rather than the quality and importance of a late stage one.

Despite the ubiquity of peer review for scientific grants and proposals, previous research

has left open important questions about the best way to transform the outputs from peer

review into decisions about the allocation of scarce resources (Franzoni and Stephan 2022).

This is especially true if the goal is to produce novel or transformative science (Sen 2014;

Boudreau et al. 2016), with science agencies having long been criticized for being too con-

servative in their research funding decisions (Nicholson and Ioannidis 2012; Greenblatt et al.

2024). In this paper, we study the aggregation of individual peer review evaluations of re-

search proposals and the implications of translating those evaluations into decisions about

which projects in a given area get funded.

The specific focus of our work is the U.S. National Institutes of Health (NIH) and the R01

grant program that is the dominant source of funding for academic biomedical labs within

the US. NIH is the world’s largest funder of research in the life sciences, distributing more

than $30B in funding each year, with most spent on basic research (Moses et al. 2005). This

funding, in turn, serves as a vital building block for patenting and commercial success in the

pharmaceutical and biotechnology sectors (Azoulay et al. 2019) and ultimately population

health. Virtually all of NIH’s funding decisions are based on the results of a highly structured

1This amount is larger than the GDP of two-thirds of the world’s economies. Including intramural funding
for research conducted inside the federal government adds a further $34 billion. Among NIH funding, more
than 70% of extramural funding is awarded through peer review (NIH 2022).

2Note that philanthropic grants are distinct from (targeted) gifts made to universities, which often reflect
different decision-making process such as naming rights or familial experience with a disease (Murray 2013).
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peer review process that can be broken down into three parts: (1) allocation of funding across

broad research areas, where Congress and the Executive Branch play a large role (Science

News Staff 2022), (2) a peer review process for proposals within areas (Lee et al. 2013; Li and

Agha 2015; Li 2017; Pier et al. 2018), and (3) the mechanism for using these peer reviews

to inform funding decisions. This tiered system means that the evaluation of scientific merit

that is conducted by peer reviewers is distinct from the funding decisions that are made by

NIH staff based on those reviewers.

Our focus here is on the funding allocation decision, point (3), which has received little

attention. NIH, like many organizations around the world, makes decisions based primarily

on the first moment of the distribution of scores from peer reviewers (Guthrie, Ghiga, and

Wooding 2018). Specifically, NIH elicits reviews from the panel of peer reviewers, calculates

the average score across the reviewers, then ranks and funds projects based on that average

(NIH 2008; Azoulay, Graff Zivin, and Manso 2012; Lauer 2023).3 This mechanism tends to

result in granting funding to projects with consistent high marks across evaluators. Previous

research on the NIH process has shown that higher peer review scores are predictive of

better research outcomes (Li and Agha 2015). However, the process is also widely thought

to favor incremental innovation over more radical ideas, and a common conjecture is that

greater dissensus in project scores could be one way to identify those more radical projects

(March 1991; Manso 2011; Azoulay, Graff Zivin, and Manso 2011; Nijstad, Berger-Selman,

and De Dreu 2014).4 Our study evaluates the value researchers place on alternative peer

review aggregation methods taking this conjecture as given.

Assessing whether the information from peer review scores could be aggregated to better

effect would ideally entail a large randomized experiment that allocates grant applications to

two or more different aggregation approaches and then tracks the outcomes that arise from

those awards over a long time horizon.5 Since such an experiment is likely to be politically

infeasible, it is important to explore alternative options. One such approach could make use

of variation in peer reviewer scores across funded projects to examine whether projects with

greater levels of dissensus generated more pathbreaking scientific discoveries. Unfortunately,

NIH has not been willing to provide researchers with access to individual reviewer scores.

NSF is similarly guarded about sharing individual review scores, and comparable data on

3Although we focus here specifically on the ranking of research project proposals, the issue of how to use
noisy inputs to construct rankings is a central question more generally in statistical decision theory (Gu and
Koenker 2023).

4Recent work finds evidence that this conjecture indeed holds for venture capital funding of startups
(Gius 2024).

5It is worth noting that Chiara Franzoni of Polytechnic University of Milan and Paula Stephan of Georgia
State University are currently running a related experiment that explores project funding decision rules with
the Novo Nordisk Foundation.
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corporate and foundation R&D decisions is even more elusive. Because this makes it im-

possible to explore the implications of alternative approaches to synthesizing scores using

programmatic data, a simulacrum is required.

We used discrete choice experiments to effectively ask scientists what they think the

aggregation function should look like when evaluating grant proposals (Louviere, Hensher,

and Swait 2000).6 The participants in the experiments were active biomedical researchers

with a track record of successful NIH funding, and the experiments simulated the research

funding process NIH uses. Participants were presented with real (but anonymized) research

proposal abstracts and a set of experimentally assigned peer review scores for those projects.

They were then asked to choose which projects they would fund with their allocated budget.

The distribution of peer review scores was randomly drawn from an experimental design

that allowed us to examine the weight participants placed on various moments of the score

distributions.7 The core idea is that there is a clean null hypothesis: do participants place all

of their weight on the mean value of scores, which is the decision rule that mirrors the current

NIH approach? Our experimental design allows for a powerful test of whether participants

value moments of the score distribution other than the mean.8 In particular, we can test

whether the researchers prefer either more or less dissensus in reviewer ratings, conditional on

the average score.9 Greater preference for dissensus is consistent with the notion that some

level of dissensus may indicate more promising but radical ideas (Ackermann 1986; Goldstein

and Kearney 2017; Krieger et al. 2022). And it is consistent with research showing that more

diverse groups can make better decisions than more homogeneous groups (Hong and Page

2004). We are also able to look at other suggested deviations from NIH’s mean-based funding

rule.

The results show that our samples of experienced biomedical scientists, on average, do

not share the same objective function as the NIH. In addition to the average peer review

6Discrete choice experiments have previously been used to study R&D decisions in a private firm context
(Carson et al. 2022). Recent work has also used preference elicitation to study how scientists trade off grant
length versus grant size, comparing the preferences of scientists to the preferences of granting agencies (Myers
and Tham 2023).

7In addition to filling an important data gap, the experiment afforded us reasonable power to detect
preferences for these attributes while presenting choices in a familiar way (9-point scale rankings, real project
titles and abstracts). It also allowed us to investigate some of the hypothesized mechanisms that may be
driving conservatism within the NIH peer review system.

8We note that it does not test whether scientists know an aggregation model for predicting the social
value of an idea that performs better than the average. This is a question that would require (currently
unavailable) data on real-world, individual reviewer scores.

9It is important to recognize that peer reviewers are assessing risky research proposals and NIH’s mean
score-based funding rule in that sense incorporates reviewer risk preferences. What it does not do is take into
account the extra information contained in the distribution of reviewer scores. It is this extra information
that participants in this experiment see in making choices concerning funding.
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scores of projects, they also placed value on other moments of the project score distribution.

Specifically, participants were willing to trade-off a project with lower average score for one

with more variance. Participants were willing to accept an average score 0.1 points lower in

exchange for an increase in score variance of 1. This effect holds true even when accounting

for other characteristics of the project score distribution. On average, scientists also preferred

projects that had a higher skew, indicating that they preferred the presence of more right-tail

scores, even at the expense of good but not great overall scores. At the same time, controlling

for skewness did not eliminate scientists’ preference for pure dissensus in the form of higher

variance.

Armed with data from our scientists’ preferences, we explore heterogeneity in their pref-

erences and the robustness of our findings to a range of potentially important features for

shaping the relationship between risk-taking and the research proposal peer review process.

We first assess whether the scientists in our sample weighted negative reviews more strongly

than positive reviews—a trend that has been documented in previous research and which has

motivated calls for reforms which would allow individual reviewers with strong preferences

to overrule potential naysayers. In contrast to previous work, we find little heterogeneity in

the effects of positive versus negative reviews, suggesting that decisions based on the full set

of project scores can be effectively used to support riskier projects, as long as the process

places positive weights on the variance of proposal scores.

Second, we ask whether scientists in the sample preferred projects that had bimodal

scores, a particularly extreme form of dissensus in scoring suggestive of two opposing belief

camps. We find that scientists did not prefer such projects relative to a model that simply

accounts for high variance in scores.

Third, we use randomization in the proximity between a scientist’s own research area

and the research area of the projects we showed them to assess the dissensus preferences

of relative experts versus outsiders (noting that the entire sample consisted of experts on

relevant biomedical research). When acting as peer reviewers, previous research shows that

scientists judge proposals inside their area of expertise relatively more harshly than proposals

outside their area (Boudreau et al. 2016). Expert evaluators have also been found to focus

first on feasibility of R&D proposals inside their own domain of expertise even at the cost

of more innovative solutions (Lane et al. 2022a). These results raise concerns with review

processes like those at the NIH, because expert peer reviewers might be especially unwilling to

take risks on novel proposals in their area. Contrary to this concern, we find that participants

who were in the best position to understand the proposal were substantially more tolerant

of dissensus. The closer a proposal was to a researchers’ own area of expertise, the stronger

was the preference for project score variance. This novel finding on the risk-taking of insiders
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has important implications for the calculus that underlies the recently documented tensions

between expertise and bias in the research proposal peer review process itself (Li 2017).

Fourth, we leverage results from an additional choice experiment, with an independent

sample from our study population, to assess whether tighter funding budgets lead to lower

dissensus tolerance. In this second study, participants were asked to construct portfolios of

projects that they were willing to fund. We then administered a budget change shock by

either tightening or relaxing the budget and asked them which projects they would cut from

or add to the portfolio, in order to assess the characteristics of the marginal proposal. As

expected, tightening the budget led participants to cut higher variance projects (those with

greater dissensus in scores). The effect was not symmetric with relaxed budgets, however:

a larger budget did not cause participants to notably add higher variance projects to the

portfolio.

Putting things together, we assess the implications of the scientists’ preferences for project

funding.10 Using the project scores from this study, as well as three sets of expert-generated

project scores repurposed from two previous studies (Pier et al. 2018; Lane et al. 2022b), we

find that the funding rule based on the overall mean score and variance preferences of our

successful biomedical scientists substantively alters which projects would get funded relative

to the standard, mean-only NIH approach. On average across the four sets of project scores,

fifty-eight percent of projects change their ranking when using the scientists’ preferences

versus the NIH rule. When funding constraints are tight, a ranking that incorporates both

the average and variance of project scores can lead to changes in funding decisions for up

to twenty percent of projects in some settings, with an average funding reversal rate of ten

percent when using the preferences from scientists with relatively greater domain-specific

expertise. This fraction of funded project reversals falls to five percent when we expand to

include the full sample of scientists.

The rest of the paper proceeds as follows. Section 2 describes the NIH review process

and context. Section 3 lays out the experimental design, randomization, and recruitment

procedures. Section 4 gives details on the econometric model. Section 5 provides the results

from fitting that model to the experimental data. Section 6 concludes.

10This assessment holds fixed any behavioral response that might be induced by changing the project
scoring rule. Any rule regarding score aggregation creates incentives for strategic behavior. Assessing
whether the scope for such behavior under a mean-variance rule relative to the current mean only rule is
beyond the scope of this paper and an important area for future theoretical and empirical research.
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2 Background on NIH Peer Review

The National Institutes of Health is made up of 27 different units called Institutes and

Centers, each with a distinct, though sometimes overlapping, research agenda that is typically

focused on a disease area or body system. For example, the National Cancer Institute, as

the name suggests, focuses on cancer related research. The National Institute of Child

Health and Human Development, in contrast, focuses on a wide range of diseases that afflict

children. Nearly all Institutes receive their funding directly from Congress and manage their

own budgets.

The NIH operates both an intramural and extramural research program. The latter,

which is the focus of this paper, supports extramural research through competitive grants

that are awarded to universities, medical schools, and other research institutions, and ac-

counts for more than 80% of the total NIH budget. The largest of these grant mechanisms is

the R01, a project-based research grant that accounts for half of all NIH grant spending and

is the predominant funding source for most academic biomedical labs in the United States.

There are currently 27,000 outstanding awards, with 4,000 new projects approved each year.

The average size of each award is $1.7 million spread over three to five years (Li 2017). The

experimental task in this paper is a stylized representation of the R01 grantmaking process,

though similar processes are also used for some other grants.

The NIH issues formal requests for proposals in priority areas, but investigators are also

free to submit applications on unsolicited topics under the extramural research program.

All applications are assigned to a review committee comprised of scientific peers, generally

known as a study section.

If one’s familiarity with peer review is primarily through the journal review process, it is

useful to define the NIH review process in those terms and thereby highlight how the NIH

approach differs from journal review.

At the initial submission stage, there are no desk rejections of proposals as long as

they are correctly formatted. Part of being correctly formatted means including extensive

institutional information and conflict of interest declarations.

Each proposal is assigned to a study section for scientific review and scoring. These

applications are typically reviewed in one of about 180 “chartered” study sections, which

are standing review committees organized around a particular theme, for instance, “Brain

Injury and Neurovascular Disorders” or “Cancer Genetics.” Unlike the journal peer review

process, which typically enlists 3–5 expert reviewers, study sections are comprised of 15–30

members with expertise in relevant domains.

The most important difference between journal peer review and NIH review of scientific
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proposals is that the NIH’s review is inherent ex ante: it must be made before the results of

the project are known. Thus, rather than a journal peer reviewer’s focus on results, reviewers

for the NIH focus on the nature and importance of the knowledge to be gained as well as its

likelihood of success in producing the promised results.

More specifically, reviewers are asked to evaluate the scientific and technical merit of

each proposal on the basis of five criteria: (1) Significance [does the proposal address an

important issue?]; (2) Approach is the methodology sound?; (3) Innovation is the proposal

novel?; (4) Investigator are the skills of the research team well matched to the project?; and

(5) Environment are the institutions in which the work will take place conducive to project

success?. Consistent with the notion that scientific review is distinct from funding decisions

(see below), reviewers are asked to ignore budgetary concerns.

The review process within a study section proceeds in the following manner. Each appli-

cation undergoes an initial review by three members of the section. These members assign

a score to proposals for each of the five criteria described above as well as a score for overall

impact (often called a priority score), which need not simply reflect the average of the crite-

ria scores. Based on these preliminary “priority scores,” weak applications (typically half)

are rejected without further discussion. The remaining applications are then discussed in

the full study section meeting, after which everyone is given the opportunity to revise their

initial scoring based on the group deliberations before anonymously submitting their final

scores. The overall priority score for the proposal is based on the average priority scores

across all study section members. Scores are then normalized within review groups through

the assignment of percentile scores to facilitate funding decisions.

Funding decisions are decoupled from the scientific review and determined by program

areas within the Institutes and Centers (IC). Decision making is largely formulaic. Proposals

are sorted from best to worst according to their percentile score (based on the mean of

priority scores across all reviewers) and funded in that order until the relevant IC’s budget

is exhausted.

A grant’s score is generally the sole determinant of the funding decision, irrespective of

proposal costs (assuming they are deemed reasonable). It also means that funding rates

may be quite different across disease areas based on IC budgets and the number and size of

applications received in a given cycle. The worst percentile score that is funded is known

as that IC’s payline for the year. In rare cases. applications are not funded in order of

score. This typically happens if new results emerge to strengthen the application (Li 2017).

Scores are never made public. There is no revise and resubmit and no appeal of decisions.

Rejected proposals can be revised and submitted to a later funding cycle (up to two more

times) where a new set of proposals compete against each other with a new review panel.
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For a young researcher not getting NIH funding in a particular funding cycle can be quite

detrimental to career prospects.

3 Study Design

The scientists in our study took part in discrete choice experiments that involved rank-

ing research projects in terms of their priority for being funded. The first study involved

choice scenarios where funding priority across four projects was decided. The experiment

also contained a randomized intervention that altered the match between the participant’s

research area and the subject of the presented projects.

Projects were assigned a randomized set of scores from a hypothetical expert review

panel. The exact scores were shown, along with the average and standard deviation of the

scores. This intervention allowed us to identify the preferences of participants for different

features of the score distribution. In particular, it allowed us to test whether participants

preferred projects with higher average scores or had preferences for other features of the

score distribution, like dissensus.

Project titles and abstracts were shown above the scores (see Section D of the Appendix).

The titles and abstracts came from real NIH grants and were chosen to span a range of

biomedical research fields. Participants were randomized into an experiment where they

saw projects from either inside or outside their specialty field. This allowed us to test for

differences in behavior between insiders and outsiders.

A separate set of participants was randomized into a second study experiment that in-

volved forming portfolios under different budget constraints. That alternative experiment is

described in Section 3.2.

3.1 Design of Study 1: Estimating Preferences for Project Attributes

To estimate participant preferences for different distributions of project scores—particularly

their preferences for consensus versus dissensus—we used a discrete choice experiment. In

the experiment, each choice scenario involved ranking four proposals that had different dis-

tributions of scores from a hypothetical expert review panel. In this way, the participants

were placed in the role of IC staff and advisory council members who select which projects

to fund based on rating inputs from their study section’s reviewers.

Participants were asked to complete four choice scenarios during the experiment. The

choice scenarios were designed so that participants would be asked to rank projects with

different average scores and score variances. Score variance was one of the main attributes

of interest in the experiment because higher variance indicates greater dissensus among the
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project reviewers.

Score distributions were generated using a balanced incomplete block design (BIBD), fol-

lowing Louviere, Flynn, and Marley (2015). BIBD designs are a type of fractional factorial

design where preferences for combinations of different attributes or attribute levels are iden-

tified using a sparse matrix of choice options. We designed the BIBD to provide reasonably

high power when estimating preferences over the average and standard deviation of project

scores, while also allowing for estimation of preferences for other attributes of the project

score distribution (e.g., number of top scores, number of bottom scores, score skewness).11

The BIBD did so by generating scores for ten hypothetical raters using nine different score

levels. Following standard NIH practice, ratings were on a 1 to 9 scale with 1 indicating

the best possible score. These ratings were reverse coded for the statistical analysis, to be

in keeping with the typical intuition that higher ratings are better. The ratings from the

ten reviewers were duplicated twice to yield thirty scores for each project. From the set of

all resulting possible score distributions, fifty-four orthogonal combinations of average scores

and score standard deviations were used to create the projects shown to the participants.

For each question, the participant was provided with thirty reviewer ratings, along with

the computed average and variance of those ratings, for four distinct proposals.12 They

were then asked to rank the four projects in terms of funding priority using a best/worst

preference elicitation format (Louviere, Flynn, and Marley 2015). The four projects in each

of these choice scenarios were chosen to maximize power to identify preferences across the

project attribute combinations. This grouping yielded 344 blocks of four projects each. See

Section D of the Appendix for examples of the questions that participants saw. The choice

scenarios were further grouped into sets of four scenarios to create eighty-six survey versions.

Participants were uniformly randomized into receiving one of the versions.

3.1.1 Project Title and Abstract Randomization

Participants were also randomized into receiving projects whose description (title and

abstract) fell inside or outside their direct area of expertise. This randomization was done

independently of the randomization into different survey versions described above. The

purpose of this second randomization was to assess the effect of subject area expertise or

insider status on the types of projects chosen.

11The resulting projects possess some mechanical correlation between average score and score variance
(for example, projects with very low and very high average scores have lower variance, on average). This
correlation is accounted for by including both attributes simultaneously in our estimating equation.

12We chose to show the mean and variance both to avoid time consuming calculations for participants and
to put the mean and variance on equal footing in terms of salience. In previous experiments with a similar
design, directly displaying the variance (relative to no display) was not crucial to a participant’s preferences
over score variance (Carson et al. 2022).
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All individuals recruited for the study had a background in biomedical research and

were part of at least one of the five NIH study sections.13 Project titles and abstracts were

selected from historical NIH R01, R35, or F32 grants listed on the Research Portfolio Online

Reporting Tools (RePORTER) website in 2016. From the set of all potential grants, we

kept those that were in one of the five study sections from which we recruited participants,

and which had a project abstract length between 300 and 400 words, so the abstract would

display consistently. All grants that could be tied to one of our study participants were

dropped.

In total, sixteen title and abstract pairs were selected and were assigned to the discrete

choice experiment projects. That assignment was done so that study participants would

see either zero or one project(s) that matched their area of expertise. The matching was

done based on the integrated review group (IRG) codes of the participants and the NIH

proposal. Based on the randomization, thirty percent of the participants did not see any

projects from their own IRGs. The remaining seventy percent of participants saw one choice

scenario where all of the projects matched their IRGs and three choice scenarios where none

of the projects matched their IRGs.

The IRG randomization was conducted at the study participant level. To identify the

effect of proximity between a presented project and the participant’s own research, while

also including participant-level fixed effects, we constructed a more granular measure of

research proximity using NIH Medical Subject Heading (MeSH) terms. The NIH maintains

a structured dictionary of terms used for indexing research on PubMed, and all medical

research can be assigned MeSH terms by passing it through an NIH indexing tool. We

passed the titles and abstracts shown to participants and the grants received by participants

through this tool, then calculated the proximity of a participant to a shown project by

counting the unique, matching MeSH terms between the project and all of the participant’s

NIH-funded projects between 2012 to 2016, divided by the number of MeSH terms associated

with the project.14

During each choice scenario, the project titles were shown above the project scores (see

Section D of the Appendix for an example). All participants saw the project titles. If they

hovered their mouse cursor over the title, they could also see the project abstract. Since not

everyone chose to hover, we exploit this feature to further assess the veracity of our results on

intellectual proximity. If an individual did not hover over the title to view the abstract, then

the proximity of that abstract to the subject’s research should be irrelevant to the project

13See Section 3.3 for details on recruitment.
14This measure of research proximity has been used in prior work on connections between researchers

(Azoulay, Fons-Rosen, and Graff Zivin 2019).

11



ranking.

3.2 Design of Study 2: The Effect of Budget Constraints

A second study was conducted with a separate set of scientists to assess the role of

budget constraints on project funding preferences. The design utilized a similar discrete

choice setup as Study 1, with two main differences. First, the participants were shown ten

potential projects and asked to choose the four that they would most like to fund. This

was presented as constructing a portfolio of projects (see Section D of the Appendix for

an example of the choice scenario). The main goal of the study was to determine how

individuals responded to tighter budgets, so after choosing their portfolio, participants were

initially told that the budget had been cut, only allowing them to fund three projects. They

were asked which project they would like to drop. Next, they were asked which project (of

the six they did not select for funding) they would add if the budget were expanded to allow

for the selection of five projects. This variation allowed us to identify the marginal project

initially selected and rejected, to determine whether budgetary pressure affects preferences

for project attributes. Each participant engaged in two of these choice scenarios.

3.3 Recruitment and Sample Construction

The initial sampling frame consisted of the set of all researchers who had received a

R01, R35, or F32 NIH grant between 2012 and 2016, from any of the following IRGs:

Brain Disorders and Clinical Neuroscience (BDCN), Cell Biology (CB); Molecular, Cel-

lular, and Developmental Neuroscience (MDCN); Oncology-Basic Translational (OBT); or

Oncology–Translational Clinical (OTC).15 We further restricted the sample to individuals

who were part of a study section that mapped to only one IRG code, to focus on individuals

working within a single, albeit broad, scientific domain. The names and contact informa-

tion for this set of potential participants was gathered from the NIH RePORTER database,

yielding 6,678 total initial contacts.

These initial contacts were randomized into two groups. First, fifty percent (3,339) of

the contacts were randomized into the group receiving the project ranking survey (Study 1).

Second, the remaining fifty percent (3,339) of the contacts were randomized into the budget

experiment (Study 2). Table A1 shows the summary statistics for contacts, broken down by

randomization group.

Of the 6,678 scientists contacted by email, 590 either declined to participate or had an

outdated email address (leading to the email bouncing), leading to a final contact sample of

15The NIH Center for Scientific Review initially reviews grant submissions and assigns the submission to
an IRG for assessment of scientific and technical merit.
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Table 1: Attrition

Study 1 Study 2
(1) (2) (3) (4) (5) (6)

Attrited Finished Diff. Attrited Finished Diff.
Mean Mean Mean Mean Mean Mean
[SD] [SD] (SE) [SD] [SD] (SE)

Fraction BDCN 0.25 0.26 -0.0071 0.27 0.30 -0.035
[0.43] [0.44] (0.026) [0.44] [0.46] (0.029)

Fraction CB 0.22 0.25 -0.024 0.20 0.20 -0.0020
[0.42] [0.43] (0.025) [0.40] [0.40] (0.026)

Fraction MDCN 0.17 0.22 -0.050 0.17 0.19 -0.019
[0.38] [0.42] (0.023) [0.38] [0.39] (0.025)

Fraction OBT/OTC 0.36 0.28 0.082 0.36 0.30 0.056
[0.48] [0.45] (0.028) [0.48] [0.46] (0.031)

Total funding 6.64 5.68 0.96 6.71 6.02 0.68
[9.29] [6.12] (0.54) [8.28] [8.17] (0.54)

Unique projects 4.23 4.12 0.11 4.32 4.05 0.27
[2.92] [2.73] (0.54) [2.93] [2.57] (0.19)

Total projects 16.3 15.0 1.27 16.6 15.7 0.82
[15.6] [15.2] (0.93) [15.8] [13.3] (1.00)

N 3,026 313 3,089 250

This table shows statistics for the sample of individuals who were contacted but did
not complete the experiment (Column 1 for Study 1 and Column 4 for Study 2) versus
those who completed the experiment (Column 2 for Study 1 and Column 5 for Study
2). Mean values are above and standard deviations are in the square braces below.
Columns 3 and 6 show the difference in means between the two groups for Study 1
and Study 2, respectively. Standard errors are in parentheses below each value. “Total
funding” is all NIH grant funding from 2012 to 2016. “Unique projects” counts unique
NIH grants and “Total projects” is grants by years of grant funding from 2012 to 2016.

6,088. Across the two studies, 563 participants completed all portions of the experiments,

for a response rate of 9.2%.16 313 participants completed Study 1 and 250 participants

completed Study 2.

Attrition in the two experiments is assessed in Table 1. We assess differential attrition

using variables from RePORTER, which contains information on the NIH activity for ev-

eryone in the sample regardless of survey completion. Across both studies, the sample of

completers versus attriters is comparable for the measures we can assess. The largest stan-

dardized difference is that participants with grants in the IRG code group MDCN were about

16This response rate is consistent with, if not substantially higher than, other recent surveys of active
scientists. For instance, for three recent papers that surveyed active scientists Myers et al. (2020) had a 1.6%
response rate, Myers and Tham (2023) had a 3.3% rate, and Tawfik et al. (2020) had a 4.1% rate.
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30% more likely to finish, while those in OBT/OTC where about 30% less likely to finish

Study 1, compared to the group that did not complete the studies.

4 Estimating Equation

Each participant’s preferences for different project attributes were estimated by fitting

a model for the probability that a participant would choose a given project. The baseline

results show the fit from the conditional logit model

Pr(yijk = 1|xijk) = F (αi + β1avgjk + β2varjk + zijkθ) (1)

for participant i making a choice about project k as part of the choice scenario version and

choice set j.17 The function F is the cumulative logistic distribution.

The conditioning variables are indicated by x and fall into three groups: the mean and

variance of project scores, other project attributes, and controls. The main right-hand-side

variables of interest are project score attributes, with a particular focus on the mean and

variance of project scores. If the scientists only cared about the average project scores, that

would show up as a non-zero coefficient on average score and a zero coefficient on the score

variance. In contrast, if they valued dissensus, they might still place a non-zero weight on

the average score, but the coefficient on the score variance would be positive. Additional

results allow for estimation of preferences around other project score attributes and project

descriptions. For example, we assessed the effect of the count of individual project score

levels, the effect of higher moments of the project score distribution (e.g., skew), participant

expertise or experience.

Control variables are fixed effects for each participant, αi, such that all estimates reflect

the average preferences of a given scientist, since the project attributes shown to that scientist

were varied (average score, score variance, project description match with the scientist’s

research, etc.).18 Standard errors were clustered at the scientist level.

17We converted rankings into binary choices by considering each choice scenario to be composed of three
different choice sets. In the first set, all projects are in the choice set and the chosen project is the top ranked
one. The second choice set consists of all projects other than the top ranked one and the chosen project
is the second ranked project. The third and final choice set consists of the remaining two projects and the
chosen project is the third ranked project. Results are similar if we use a multinomial logit (see Table A3),
but our binary conditional logit approach allows for more granular fixed effects controls. Inferential accuracy
is maintained by clustering at the participant level.

18Participant fixed effects subsume project fixed effects, so the results are unchanged by the inclusion or
exclusion of project fixed effects.
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5 Results

5.1 Scientist Preferences for Dissensus

We first show models for scientist preferences over different attributes of project scores.

The results from fitting Equation (1) are shown in Table 2. The dependent variable is equal

to 1 if the participant chose a project in a given choice scenario. All right-hand-side variables

are standardized so that the coefficient magnitudes are comparable.

Table 2: Scientist Preferences Over Project Scores

(1) (2) (3)
Project choice Project choice Project choice

Avg. score 0.82*** 0.92*** 1.05***
(0.041) (0.056) (0.088)

Score variance 0.085*** 0.11*** 0.084**
(0.027) (0.033) (0.035)

Score skew 0.10*** 0.22***
(0.035) (0.064)

Minimum score -0.14**
(0.055)

Maximum score -0.034
(0.039)

Clusters 313 313 313
N 11268 11086 11086

This table shows results from estimating Equation (1) on the baseline

sample. The dependent variable is an indicator for whether the partici-

pant chose a given project. All right-hand side variables were standard-

ized. The models include participant fixed effects. Standard errors are

clustered at the participant level: * p < .10, ** p < .05, *** p < .01.

Column 1 performs the simplest and most direct test of whether the scientists’ preferences

match the funding rule followed by NIH. The first coefficient shows that participants strongly

preferred projects with higher average ratings. For fixed effect values of 0 and other variables

held at their mean, the model implies that a one standard deviation increase in average

project score increased the chance that the project was chosen by eighteen percentage points,

a fifty-five percent increase relative to the baseline probability (thirty-three percent) that a

project was chosen.

The second coefficient shows that the scientists also preferred projects with higher score

variance. Conditional on the average score, a one standard deviation increase in the variance
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of project scores increased the chance that the project was chosen by 1.8 percentage points

(a 5.4% increase). This effect shows that scientists were dissensus-seeking on average. It also

runs counter to the mean-only scoring rules currently used by organizations such as NIH.

The subsequent columns test whether the preferences were for higher variance per se or

for other correlated project attributes, some of which also indicate a preference for dissensus.

Participants could appear to prefer high variance projects, for instance, if they simply pre-

ferred high scores and were relatively insensitive to the rest of the score distribution. Column

2 adds the skewness of project scores and Column 3 adds the minimum and maximum score

assigned to the project, to see if these attributes explain the variance preferences. In both

cases, the preference for higher variance projects persists.19 The preference for skewness

shows that participants were not simply choosing projects based on the statistics shown in

the tables but were attendant to richer information about the distribution of scores.

In Column 2, for example, even after controlling for skewness and average score, partici-

pants still preferred higher variance projects. If anything, the preference for higher variance

projects appears stronger. At the same time, participants also preferred projects with higher

skew, with an effect size comparable to that of variance. The average project in our sample

had a small negative skew, so an increase in skewness for that project, at the margin tended to

result in a more symmetric distribution (while holding the mean and variance fixed).20 This

preference is consistent with scientists placing substantial value on high scores, particularly

if the rest of the scores were concentrated near the middle of the range.

Column 3 adds the minimum and maximum scores to the estimating equation. Across

all projects and after reverse coding, the minimum possible score was 1 and the maximum

was 9, but different projects had different highest or lowest scores depending on their exact

score distributions. A project with a maximum score below 9 or a minimum score above 1

often had a lower score variance than a project with scores across the full range, so Column

3 adds controls for the actual range. The results show that scientists preferred projects, on

average, when both the minimum and maximum scores were higher, but these preferences

were not as strong as the preference for variance. The maximum score effect is not estimated

precisely enough to reject at the five percent level that the preferences were zero.

19Table A2 adds further score statistics including kurtosis, interaction between mean and variance, the
number of lowest or highest scores in the score distribution, and indicators for whether the project had at
least one score of 1 (lowest possible score, after reverse coding) or 9 (highest possible score). In all cases,
the estimated effect of score variance remains consistent.

20Heterogeneity analysis reveals that participants also preferred it when positively skewed distributions
became even more positively skewed. See Table A6.
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5.1.1 Robustness and Sensitivity Checks

Table A3 uses a multinomial logit model to estimate the effect of project scores on project

rankings. The multinomial logit relaxes the assumption of homogeneous coefficients across

the three choice sets involved in ranking projects, but at the cost of not including high-

dimensional fixed effects. Estimating using the multinomial logit shows that the results are

in line with the baseline binary conditional logit model with some notable heterogeneity

across choice sets. When choosing the highest and second highest ranked projects, scientists

preferred higher mean and higher variance projects. When ranking the third versus the

fourth project, the scientists were indifferent between higher or lower variance. They also

cared less about the average score. Similarly, if we allow mean and variance preferences to

vary by choice order in the baseline model, we find no difference in variance preference for

the choice of first and second rated projects. Participants cared less about variance when

choosing between the third and fourth rated projects.

The conditional logit model is known to do a good job summarizing aggregate sample

preferences even when there is considerable underlying preference heterogeneity (Allenby

and Rossi 1991). Nevertheless, economists are often interested in characterizing preference

heterogeneity using more flexible models. In Table A5, we present a series of five models

which explicitly relax the conditional logit model’s assumptions: (mixed) random parameters

(Train 2009), scale heterogeneity (Swait and Louviere 1993) and generalized multinomial

(Fiebig et al. 2010) logit models. Results show that individual respondents differ in their

tastes for both dissensus and mean proposal score. What motivates this paper though is

not the individual level trade offs but the average of these trade offs across respondents

which better resembles the panel decision making process that governs the NIH allocation

process. Despite radically different approaches, the more flexible models with individual-

specific parameter estimates and the conditional logit model all yield similar preferences for

mean score and dissensus, on average.

Table A4 evaluates the sensitivity of the results to sample and control changes. As

discussed in Section 3.3, 313 participants completed the full study while 356 participants

started the experiment and completed at least one ranking exercise. The results show that

preferences were unchanged if all available data were included (meaning that we include not

only the participants who completed all questions, as in the baseline results, but also the

participants who partially completed the survey). The second column adds more granular

fixed effects for the interaction of participant, question version, and choice scenario. Includ-

ing these fixed effects, if anything, increases the magnitude of the estimated preference for

dissensus. The results are also unchanged if we restrict the sample to individuals who spent
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more than 10 minutes on the survey (the 10th percentile of elapsed time among completers).21

Further robustness checks are reported in Section B of the Appendix.

5.2 Assessing Hypotheses About Dissensus Tolerance and Proposed Funding Reforms

Many commentators, including directors at NIH, have suggested that NIH is too cautious

when funding research. The results above show that the average scientist in our sample agrees

with that sentiment. Here we assess explanations that have been proffered for why funding

decisions might be so dissensus-intolerant, and investigate scientist preferences for reforms

that have been suggested to make the process less risk averse.

5.2.1 Are Positive and Negative Reviews Weighted Differently?

Testing for dissensus preferences using score variance treats low and high scores symmet-

rically. Previous studies of peer review for scientific grants have emphasized that negative

reviews can have an oversized influence on the probability that a grant gets funded.22 And

consensus has been shown to emphasize the influence of negative scores (Lane et al. 2022b),

as well as to increase variability of ratings of similar projects across different sets of reviewers

(Pier et al. 2017). In response, a variety of reforms have been proposed that would bypass

some or all of the consensus-based peer review processes. For example, foundations have

experimented with a so-called “golden ticket” that allows a reviewer to ensure that an ap-

plication gets funded, even over the objections or low ratings of other reviewers (Sinkjaer

2018). A similar reform has also been proposed for Program Officers at NIH (Buck 2022).

Although we cannot directly test whether the scientists in our study would prefer a golden

ticket-style selection procedure, we can test the underlying basis for that proposal—the idea

that negative reviews exert an oversized influence. This hypothesis is assessed in Figure 1.

The figure shows the effect, estimated from a conditional logit model, on the choice of project

coming from the addition of one score from the range of possible scores. The omitted score

is 5, the midpoint of the range from the best (reverse coded) score of 9 to the lowest score

of 1. The coefficients can be interpreted as the effect of replacing a score of 5 with the score

indicated on the x-axis. The dashed line shows a linear fit to the point estimates.

The results show that choice probability was monotonically increasing in score, and that

the effect of a low score was roughly symmetric with the effect of a high score. In particular,

21Given that participants could stop taking the survey at any time and that they did not receive a
completion payment, they had no incentive to waste their own time providing low-quality responses.

22In particular, Jerrim and Vries (2020) found that “a single negative peer review is shown to reduce the
chances of a proposal being funding from around 55% to around 25% (even when it has otherwise been rated
highly).”
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Figure 1: Marginal Effect of Each Score on Choice Probability
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Notes: The figure shows the marginal effect of each possible project scores on the probability that the project
was selected, relative to a score of 5. The estimates were generated by fitting a version of Equation (1) where
the project attributes are the count of scores at each score level. The equation includes subject fixed effects.
See Table A7 for the numerical coefficients. Whiskers are 95% confidence intervals based on standard errors
clustered at the participant level.

replacing a score of 5 with a score of 1 reduced the probability of a project being chosen by

almost the same amount that replacing a score of 5 with a 9 increased the probability. A

formal hypothesis test to see whether the sum of the coefficients is 0 yields a coefficient of

0.004 with a p-value of 0.25.

For less extreme scores, we did find some evidence for asymmetry. A score of 2 was

penalized almost the same amount as a score of 1, while a score of 8 raised the probability of

selection by less than would be expected based on the average slope of the marginal effects

(as indicated by the dashed line). Even here, though, we cannot reject the hypothesis that

the scores had marginal effects of the same magnitude. Overall, the results do not support

the idea that negative scores disproportionately caused scientists to think poorly of a project.

Instead, scores had a roughly uniform effect across the distribution of possible scores.

5.2.2 Does Bimodality Better Capture Scientists’ Preferences for Dissensus?

Buck (2022) proposes that projects with bimodal scores could receive higher funding

priority as a way to reduce the conservatism of funding decisions. What preferences did

the scientists in our experiment exhibit along this dimension? Table 3 shows estimated

preferences for projects with bimodal scores (Column 1) and simultaneously for bimodality
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and higher variance (Column 2). In both cases, the average score was included as a control.

Projects were classified as bimodal using the dip test from Hartigan and Hartigan (1985),

as implemented in Stata by Cox (2016).23

Table 3: Preferences for Bimodality Versus Variance

(1) (2)
Project choice Project choice

Avg. score 0.77*** 0.82***
(0.037) (0.041)

Bimodal -0.052 -0.037
(0.13) (0.12)

Score variance 0.085***
(0.027)

Clusters 313 313
N 11268 11268

Notes: This table shows results from estimating

Equation (1) on the baseline sample. The depen-

dent variable is an indicator for whether the partic-

ipant chose a given project. The average score and

score variance variables were standardized. The vari-

able “bimodal” is an indicator for the project scores

exhibiting a dip statistic greater than 0.1 (Hartigan

and Hartigan 1985). The models included participant

fixed effects. Standard errors are clustered at the par-

ticipant level: * p < .10, ** p < .05, *** p < .01.

The table shows that scientists did not prefer bimodal projects. Moreover, the preference

for dissensus, as captured by project score variance, was unaffected by the inclusion of the

bimodality measure. Bimodality is a particularly extreme form of dissensus that was not

favored by the participants in our sample.

At the same time, bimodality is rare in both the scores we showed to participants and in

current, real-world NIH scores. Over time, NIH has worked to avoid strategic behavior that

results in bimodal scores.24

23In the table, the variable “bimodal” is an indicator for whether the dip statistic was above 0.1, although
the results are robust to alternative cutoffs and available upon request.

24For example, Ogden and Goldberg (2002) describes the move to percentile rankings as a method to
reduce behavior by some reviewers of inflating the scores of projects that they like, while simultaneously
lowering the scores of competing projects, so that the favored project would look even better by comparison.
More recently, NIH has relied on training and guidance to reviewers (Sampat 2023).
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5.2.3 Does Expertise Decrease Dissensus Tolerance?

Lay observers, scientists, granting agencies, and previous research studies have debated

whether expertise and experience increase or decrease the willingness of scientists to engage in

high-risk research. The effect of expertise on dissensus tolerance could go in either direction.

On one hand, greater expertise might increase a scientist’s convictions about the correct

direction of research, making them less subject to consensus-driven selection criteria. On

the other hand, previous work has shown that the removal of incumbent researchers in a field

can spur innovation (Azoulay, Fons-Rosen, and Graff Zivin 2019), and recent work shows

that the creativity of patents quickly declines with experience (Kalyani 2022). Arthur C.

Clarke, in a quote that has come to be known as Clarke’s Law, offered some additional

nuance by arguing that the effect of experience is asymmetric: “When a distinguished but

elderly scientist states that something is possible, he is almost certainly right. When he

states that something is impossible, he is very probably wrong” (Clarke 1962).

Understanding the direction of this effect is important because expert review is at the

heart of nearly all scientific project evaluation, whether for funding or publication purposes.

NIH in particular relies heavily on carefully matched peer evaluators when judging grant

quality.

We assessed the effect of expertise and experience with the estimates shown in Table 4.

Overall, we found that expertise increased dissensus tolerance. In other words, participants

who were in the best position to understand the proposal had substantially stronger pref-

erences for higher project score variance. Column 1 shows the effect of proximity between

the shown project and the participant’s research area, based on our measure of MeSH term

overlap between the shown projects and the participant’s NIH grants from 2012–2016. A

stronger overlap in these terms indicates that the scientist was active in the area from which

the project’s description was drawn, and thus measures the degree to which the scientist was

a relative insider for the specific field represented by the project. Recall that the projects

shown to the participants were randomized to be either closer to or further from their field.

The results show that scientists modestly preferred projects that were more inside their

research area. The “MeSH match” coefficient is positive and significant at the ten percent

level, with an effect size that is about half the size of the effect of project score variance.

The interactions between this measure of expertise and project score statistics shows that

experts had a significantly stronger preference for dissensus, as indicated by the positive

coefficient on the interaction between score variance and expertise, as measured by MeSH

match. Given that all variables are standardized, the coefficient on “score variance” indicates

the preference that a scientist with an average MeSH match had for a project with higher

variance scores. The results show that this scientist preferred higher variance projects, on
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Table 4: Preferences for Projects by Experts

(1) (2) (3)
Expertise Placebo Check

Project Project Project
choice choice choice

Avg. score 0.82*** 0.70*** 0.98***
(0.041) (0.052) (0.064)

Score variance 0.083*** 0.079** 0.091**
(0.027) (0.037) (0.040)

MeSH match 0.036* 0.053* 0.014
(0.021) (0.029) (0.031)

Avg. score × MeSH match 0.032 0.048 0.0041
(0.029) (0.042) (0.039)

Score variance × MeSH match 0.050** 0.079** 0.011
(0.024) (0.040) (0.029)

Hover subgroup Full sample Always Never/rarely
Clusters 313 169 144
N 11268 6084 5184

Notes: This table shows results from estimating Equation (1) on the baseline

sample. The dependent variable is an indicator for whether the participant

chose a given project. All right-hand-side variables were standardized. The

models include participant fixed effects. Standard errors are clustered at the

participant level: * p < .10, ** p < .05, *** p < .01.

average, and that the preference was about one-tenth as strong as the preference for higher

average score.

A scientist with a one standard deviation higher MeSH match showed little difference

in their preferences over average scores but a substantially stronger preference for higher

variance. In particular, the variance preferences were sixteen percent as strong as average

score preferences for such individuals. Going the other direction, the results indicate that a

scientist who was relatively far from the area of the shown project (one who has a 1 standard

deviation lower MeSH match) placed almost no weight on project score variance.

The second and third columns show the results of a placebo test that was built into

the experiment to determine whether the results from Column 1 were driven by the study

participants actually taking the time to understand the abstracts that were shown, instead

of simply acting differently than individuals with lower match rates for reasons unrelated to

project content. To see the abstracts of the projects included in the experiment, participants

needed to hover over links. Column 2 shows the results for subjects who reported always
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hovering over the links. Column 3 reports results for subjects who said they rarely or never

hovered to look at the abstracts. While the endogeneity of hovering means that these results

should be interpreted with caution, one can see that the effect of expertise is substantially

stronger for subjects who did report looking at the abstracts.25

5.2.4 Do Tighter Budgets Decrease Dissensus Tolerance?

Francis Collins, NIH Director from 2009 to 2021, argued that budgetary pressures reduce

scientific risk-taking, stating (emphasis ours): “Although the two-level NIH peer-review

process is much admired and much copied around the world, its potential tendency toward

conservatism is a chronic concern and invariably worsens when funding is very tight.”26

Study 2 allowed us to test this hypothesis. The results are shown in Table 5. The first

two columns show estimates for the attributes of the project that was dropped when scien-

tists were told that the budget had been reduced. Column 1 shows the characteristics of

the dropped project compared to the projects that were kept. Unsurprisingly, the dropped

project had a lower average score compared to the projects that were kept in the portfo-

lio. Lending support to Collins’ statement, the dropped project also tended to have higher

score variance. When faced with tighter budgets, participants preferentially dropped riskier

projects characterized by higher dissensus.

Column 2 compares the dropped project to the projects that were originally not chosen

for the portfolio of funded projects. Here, the average score clearly played an important role,

but the variance of scores was no longer as important. The effect size is substantially smaller

than when comparing the dropped project to projects that were kept in the portfolio, and

the effect is not statistically significant.

Columns 3 and 4 show the characteristics of the projects that were added when budgets

were expanded, with Column 3 showing the comparison to the four projects that were already

chosen and Column 4 showing the comparison with the projects that were not originally

chosen. The variance of scores appeared to play little role in this choice.

Together, these results provide nuanced evidence for Collins’ claim. Compared to projects

that were kept in the portfolio, tighter budgets did cause scientists in our sample to cut

higher-variance projects. But the reverse was not true for more expansive budgets, and

the cut project was not substantially different than other non-chosen projects in terms of

variance.

25Results using other subject-specific heterogeneity measures are shown in Table A8. In the sample,
men were more dissensus-loving than women. An elicited measure of risk aversion did not strongly predict
dissensus preference. And individuals with greater breadth in their research, as measured by the total
number of unique MeSH terms, were more tolerant of dissensus.

26Quoted in Kolata (2009).
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Table 5: Effect of Constrained or Relaxed Budgets

(1) (2) (3) (4)
Tighter Budget Relaxed Budget

Dropped proj. Dropped proj. Added proj. Added proj.
compared to compared to compared to compared to

kept not chosen kept not chosen

Avg. score -0.82*** 1.88*** -1.80*** 0.34***
(0.10) (0.14) (0.14) (0.056)

Score variance 0.17** 0.078 -0.045 -0.071
(0.081) (0.063) (0.072) (0.060)

Clusters 250 250 250 250
N 1983 3516 2483 3516

Notes: This table shows results from estimating Equation (1) on the baseline sample.

The dependent variable is an indicator for whether the participant chose a given

project. All right-hand side variables are standardized. The models include participant

fixed effects. Standard errors are clustered at the participant level: * p < .10, **

p < .05, *** p < .01.

5.3 Implications for Project Funding

How large is the difference between the procedure NIH uses for funding (mean score) and

the preferences possessed by the scientists in our study when it comes to actually ranking

and funding projects? Although NIH does not maintain data on project scores and funding

decisions that would allow us to test this question on historical NIH proposals, three datasets

illuminate the scale of the difference. First, we calculated the changes in rankings for the

fifty-four unique mean-variance combinations in the projects that we showed to participants

in the first study. Second, we also repurposed two prior experiments that closely replicated

the NIH review process. The first of these was Pier et al. (2018), which carefully simulated

the NIH review process using real NIH reviewers, former study section leaders, and proposals.

The second study, Lane et al. (2022b), conducted two experiments involving the evaluation

of real submissions to a pair of small grants competitions in translational medicine run by a

large U.S. medical school. The data from Lane et al. (2022b) is especially revealing because

it allowed us to assess whether the scientists’ preferences would have resulted in different

real-world funding decisions.

For the fifty-four different project score mean and variance combinations included in our

Study 1, the overall ranking for half of them changed when ranked according to the mean

and variance preferences given in Table 2, Column 1, versus a ranking purely based on mean
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score. The largest changes in overall rank occurred, naturally, for projects that had the

highest variance. Given that project scores were bounded, these projects also tended to have

average scores that were closer to the middle of the pack.

Thus, high variance caused two effects that drove a wedge between the NIH-style mean

score ranking and the rankings that the scientists in our sample preferred. First, consider

two projects with the same mean but different variances. The NIH procedure would give

these two projects the same score, while the scientists gave the higher variance project a

higher score. Thus, the NIH procedure gave the high variance project a relatively lower

rank than the scientists. Second, consider two projects with different average scores. A

higher average score was mechanically, positively correlated with lower variance given that

scores were bounded. This caused the NIH procedure to rank a higher variance project lower

(because of its lower mean score), while the scientists ranked the two projects closer together.

These two effects can be seen by comparing individual proposals drawn from our Study

1. To illustrate the first mechanism, we focus on two projects that had an average score

of 6.3, but one had a low variance of 3.3 while the other had a high variance of 9.5. The

NIH procedure would rank both of these projects right around the 50th percentile across

the entire set of projects in our study. Using scientists’ preferences, however, would put

the higher variance project at the 63rd percentile and the low variance project at the 44th

percentile.

To illustrate the second mechanism, we can again consider the high variance project with

an average score of 6.3 and a variance of 9.5. But this time we compare it to a project

with an average score of 6.5 and a score variance of 2.3. The NIH procedure would rank

the latter project in the 63rd percentile of the overall project distribution, well ahead of the

higher variance project (even though the difference in their means is only one-quarter of

the standard deviation in average project scores across the experiment). If we ranked them

according to the scientists’ preferences, the lower variance project would drop down to the

55th percentile, while the high variance project would again move up to the 63rd percentile.

Using scores generated by Pier et al. (2018), which strove to closely replicate the NIH

review process, we also found substantial differences in project ranking between the two

procedures. In the Pier et al. study, many projects near the top of the ranking received

identical average scores. At the 80th percentile, five studies were given the same average score

of 7. Using variance, one can break three of these ties, with the highest variance project

(variance of 4.7) being ranked first among the set, the lowest variance project (variance of

0.7) ranking last, and the remaining three projects with a variance of 1 being ranked in the

middle.

This example from Pier et al. highlights an additional insight from our results. Taking
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Figure 2: Funding Reversals Under NIH and Scientist Ranking Procedures
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Notes: This figure shows the reversal rate for project funding as a function of the payline (fraction of projects
that get funded) for four different sets of project scores (Study 1 from this paper, the two studies from Lane
et al. (2022b), and Pier et al. (2018)). The reversal rate is the fraction of studies that changed whether
they were funded under a mean-only ranking versus the mean and variance-based ranking. The lines are
LOESS fits to reversal rates calculated at each payline percentile. The solid line shows the reversal rate when
using the estimated preferences from the baseline results using the full sample of scientists. The dashed line
shows the reversal rate when using the preferences of scientists who were relative experts (a MeSH match 1
standard deviation higher than average).

variance into account can help break ties that often emerge when a relatively small set

of reviewers are judging each project. The data from the two experiments in Lane et al.

(2022b) allow us to examine how actual funding decisions would have changed if variance

had been taken into account. We did so by first ranking projects by their average score.27

Multiple reviewers rated each project, which allowed us to also calculate the variance of scores

and re-rank the projects using the project score attribute preferences from our scientists.

Importantly, we found that in both experiments, accounting for variance would have led

to different projects being funded: the marginal projects funded would have been switched,

with a higher-variance, unfunded project replacing a lower-variance project that actually did

get funding.

We call such a change in funding a “reversal” of the project funding decision. For any

given possible payline (the fraction of projects that get funded), we can calculate the reversal

27The main goal in Lane at al. is to study the effect of showing reviewers scores from other reviewers to
assess how exposure to others’ scores affects one’s own rankings. Thus, we only used the original, independent
scores that participants provided for the exercises described here.
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rate for the four sets of project ratings described in this section. The reversal rate is the

fraction of projects funded at the payline that changes when we move from a mean-only

to a mean-and-variance ranking.28 Figure 2 shows the average reversal rate across sets of

projects from the different studies (this study, Pier et al., and two datasets from Lane et al.)

as a function of the payline.

Starting first with the scientists who were in the position to better understand the pro-

posals (those with MeSH match values 1 standard deviation higher than average), we see

from the dashed line that the reversal rate was around 10% for all paylines. Even when

we expand to include the preferences for all scientists estimated in Table 2 Column 1, we

still see reversal rates of 4 to 6%, depending on the payline. The highest reversal rates are

near typical NIH paylines of 10 to 20%.29 And this average reversal rate masks high rates

that can appear for individual sets of project scores. Figure A1 shows the reversal rates

separately for each of the four studies. Rates are as high as 20% for the proposals from

Lane et al. (2022a). Together, these results underscore that variance preferences are not

only statistically important, but can be consequential for funding decisions, and particularly

so in cases that closely mimic real NIH grantmaking.

6 Conclusion

Scientific research, through its influence on technological innovation, has long been rec-

ognized as an important contributor to aggregate income (Nelson and Phelps 1966) and

a driver of economic growth (Lucas 1988; Romer 1990), yet the path from research to in-

novation is uncertain, requiring institutions that make substantial scientific investments to

appropriately balance risk and return in the portfolio of projects they support. Research

projects that closely build on existing scientific knowledge may be a relatively safe bet, but

the incremental innovation they produce may have lesser social value. In contrast, research

that eschews conventional wisdom for more speculative pursuits may be required to produce

radical or paradigm-shifting innovations of enormous value, but it is also much more likely

to end in failure (see Eric Lander as quoted in Fallows (2014); Manso (2011)). The design

of public and private institutional structures employed to evaluate research projects plays a

critical role in balancing the risk and rewards from research, which, in turn, informs future

scientific frontiers.

28The reversal rate only counts the rate at which projects go from funded to unfunded because each
change that causes a project to lose funding will cause another project to gain funding given the fixed
funding constraint. This definition avoids double counting.

29For example, the National Institute of Allergy and Infectious Disease at NIH published annual informa-
tion on paylines for grants. The payline for R01 grants in 2022 was twelve percent (sixteen percent for new
PIs).
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The focus of this paper is on the peer review process for research proposals and how

NIH (and other science-based agencies) synthesizes the output of that process into resource

allocation decisions. Of particular concern is that agencies base funding decisions on the

average of peer review scores, ignoring higher moments of the score distribution that may

confer valuable information about the radicality of a scientific proposal. Since data on

individual scores from NIH is unavailable to the research community, we leveraged data

from two novel discrete choice experiments, fielded in samples of active biomedical scientists

with a successful NIH grant history, to assess their preferences for aggregating peer review

evaluations into scientific funding decisions.

In contrast with current practice, we found that these scientists—the very scientists that

NIH relies upon for expert evaluations of research proposals—preferred to fund projects

where there was some disagreement among reviewers. This preference for higher-dissensus

projects was not driven by lone wolf reviewers who were enamored with a project, nor

was it driven by focus on an aberrant, critical review. Rather, it appears that our experts

valued healthy disagreement over either middle-of-the-road reviews or more extreme forms of

dissensus such as projects that received bimodal scores. While this appetite for risk shrank as

budgets became tighter, it did not completely disappear. We also found that those scientists

with relatively greater domain expertise on a proposal were consistently more enthusiastic

about dissensus in their reviews than those asked to make decisions outside their specific

area of expertise. Applying our estimates to prior studies that mimic the NIH review process

suggests that incorporating preferences for dissensus would lead to changes in billions of

dollars of research funding annually.

Our results should not be construed as a critique of the peer review process. Indeed, we

believe the impartial review of proposals by experts in the field is essential for prioritizing

scientific investments by both public and private agencies. The substance of our inquiry

relates whether there is relevant information from that process beyond the simple mean of

reviewer scores that should influence the funding decisions of a major government entity

charged with funding risky R&D projects related to improving the public’s health. While

our findings have implications for funding rule reforms that could prove important, many

questions remain unanswered. Fundamental for the tasks ahead is a better understanding

of the causal relationship between peer review scores and scientific impact. This will require

a clever mix of experimental design and currently unavailable data from funding agencies

containing individual reviewer scores on projects being evaluated.30 Prospective experimen-

30The NIH could conduct analyses using their own, non-public data to determine rules that are most
predictive of successful research outcomes. These analysis could mirror recent studies of journal article peer
review (Card and DellaVigna 2017; Card et al. 2020), bearing in mind the greater challenge faced by the
NIH when judging research proposals rather than completed research papers.
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tation may offer additional insights and seems particularly well suited to the newly created

Technology Innovation and Partnerships Directorate at the NSF. Shrinking research budgets,

concerns about the technological competitiveness of the United States, and global declines

in research productivity all underscore the need for more formal examinations of the policies

and programs that ultimately shape research portfolios.
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A Randomization Checks

Table A1: Randomization Balance: Omnibus F-test

(1) (2)
Study 1 indicator Study 1 indicator

Fraction BDCN -0.018 -0.078
(0.019) (0.061)

Fraction CB 0.024 0.014
(0.020) (0.063)

Fraction OBT/OTC -0.0034 -0.057
(0.018) (0.061)

Total funding 0.00061 -0.0030
(0.0010) (0.0045)

Unique projects -0.0021 0.014
(0.0030) (0.012)

Total projects -0.00028 -0.0013
(0.00063) (0.0030)

F-stat 1.21 0.74
p-value 0.30 0.61
Observations 6678 563

This table shows randomization checks for the randomization into

Study 1 versus Study 2. Column 1 shows the check for the total

sample of potential participants. Column 2 shows the check for

the sample that completed the study. Heteroskedasticity robust

standard errors are in parentheses: p < .10, ** p < .05, *** p < .01.
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B Robustness and Sensitivity Results

Table A2: Additional Preferences for Score Statistics

(1) (2) (3) (4) (5)
Project choice Project choice Project choice Project choice Project choice

Avg. score 0.77*** 0.83*** 0.93*** 0.67*** 0.81***
(0.037) (0.041) (0.058) (0.062) (0.044)

Score variance 0.075*** 0.11*** 0.092 0.076**
(0.029) (0.035) (0.061) (0.034)

Avg. score × Score variance 0.032
(0.026)

Score skew 0.14**
(0.068)

Score kurtosis 0.034
(0.056)

Count of lowest scores -0.14***
(0.052)

Count of highest scores 0.11***
(0.044)

At least one bottom score -0.027
(0.050)

At least one top score 0.099
(0.077)

Clusters 313 313 313 313 313
N 11268 11268 11086 11268 11268

This table shows results from estimating Equation (1) on the baseline sample. The dependent variable
is an indicator for whether the participant chose a given project. All models include participant fixed
effects. “Score skew” is the skew of project scores, “score kurtosis” is the kurtosis of project scores, “count
of lowest/highest scores” is the number projects given the maximum or minimum possible scores (given
the boundedness of project scores, this is mechanically correlated with score variance), and “at least one
bottom/top score” is an indicator for whether there was at least one project score at the maximum or
minimum score value. Standard errors are clustered at the participant level: * p < .10, ** p < .05, ***
p < .01.
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Table A3: Robustness: Main Results Using Multinomial Logit and Project Rank

(1) (2) (3)
rank rank rank

1
Avg. score 1.81*** 1.81*** 2.30***

(0.11) (0.11) (0.16)
Score variance 0.17*** 0.16*** 0.24***

(0.060) (0.060) (0.075)
MeSH match 0.047 0.093

(0.042) (0.059)

2
Avg. score 1.14*** 1.14*** 1.44***

(0.082) (0.082) (0.11)
Score variance 0.11** 0.11** 0.17***

(0.053) (0.053) (0.064)
MeSH match 0.051 0.092*

(0.036) (0.050)

3
Avg. score 0.60*** 0.60*** 0.77***

(0.058) (0.058) (0.079)
Score variance -0.029 -0.030 -0.0019

(0.050) (0.050) (0.058)
MeSH match 0.053 0.091*

(0.036) (0.051)

Subject FEs No No Yes
Clusters 313 313 313
N 5008 5008 5008

This table shows results from estimating a multi-

nomial logit model corresponding to Equation

(1) on the baseline sample. The dependent vari-

able is the rank the participant gave to a given

project (lower is better and the excluded cate-

gory is rank 4 out of 4). Standard errors are

clustered at the participant level: * p < .10, **

p < .05, *** p < .01.
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Table A4: Robustness: Sensitivity to Sample Restrictions and Fixed Effects

(1) (2)
Project choice Project choice

Avg. score 0.82*** 1.09***
(0.040) (0.070)

Score variance 0.083*** 0.12***
(0.027) (0.034)

Sample All obs. Granual FEs
Clusters 356 313
N 12060 11268

This table shows results from estimating Equation (1)

on the baseline sample. The dependent variable is an

indicator for whether the participant chose a given

project. All models include participant fixed effects.

Standard errors are clustered at the participant level:

* p < .10, ** p < .05, *** p < .01.
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B.1 Estimates From More General Logistic Models

In the main results reported in Table 2, we are interested in the average preferences for

higher mean score and higher score variance, which we estimate using the conditional logit

model given in Equation 1. Here, we report results from models that relax the assumptions

of the conditional logit model—allowing for subject level attribute and scale heterogeneity.

The estimating equations for these more general models are nested in the following equa-

tion:

Pr(choiceit = j|βi) =
exp(β′

ixitj)∑J
k=1 exp(β

′
ixitk)

(A-1)

where i indexes subject, t indexes the choice scenario, and j and k index the project at-

tributes. The variable xitj is a vector containing the mean and variance of project scores and

βi is the vector of individual-specific coefficients associated with these project attributes.

The coefficients are defined by

βi = σiβ + {γ + σi(1− γ)}ηi.

The coefficients in this equation are a vector beta that is constant across individuals and

measures the average utility weights across the sample for the different variables in x; a single

parameter for the scale of the individual-level idiosyncratic error (σi), which captures overall

scaling of the individual’s tastes; and a random vector ηi distributed multivariate normal

with mean zero and variance-covariance matrix Σ, which captures latent taste heterogeneity.

The parameter γ determines how much of the variance is explained by these latter two

components. The setup and parameterization of these parameters follows Fiebig et al. (2010).

In particular, we assume that σi is distributed log normal with mean ¯sigma + θ′zi and

standard deviation τ . The parameter ¯sigma is a normalizing constant, and zi is a vector of

subject fixed effects in this application.

The results of fitting versions of this model—a mixed random parameters model (Train

2009), a scale heterogeneity logit model (S-MNL) (Swait and Louviere 1993), and the gener-

alized multinomial logit (G-MNL) model—are shown in Table A5. The coefficient estimates

are qualitatively consistent with the baseline results in the sense that on average, partici-

pants prefer both higher mean and higher variance projects. The subject-level utility weights

are predicted based on the average utility weights and heterogeneity in weights using the

gmnlpred command from Gu, Hole, and Knox (2013). For example, in the G-MNL reported

in Column (5), the average weight placed on project score variance is 8% as large as the

weight that is placed on average project score, comparable to the 10% value derived from
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Table 2.

Table A5: Generalizations of the Conditional Logit Model

(1) (2) (3) (4) (5) (6)
Conditional Mixed Mixed S-MNL G-MNL G-MNL

logit logit full corr. full corr.

Average utility weight
Average project score 1.0973*** 1.9243*** 1.9377*** 2.6297*** 2.8723*** 2.9027***

(.0709) (.1316) (.1322) (.2744) (.3401) (.3718)
Project score var. 0.1199*** 0.1316*** 0.1502** 0.2010** 0.1568** 0.1663**

(.0341) (.0473) (.0499) (.0794) (.0727) (.0687)
Utility weight heterogeneity
Average project score 1.3947*** 1.4328*** 1.0076*** 1.0243***

(.0998) (.1011) (.9151) (.1807)
Project score var. 0.4597*** 0.0949 .6364*** .6489***

(.0559) (.0633) (.0922) (.0815)
Avg × var. -.4652*** .2166

(.0562) (.1711)
Additional parameters
τ 1.4100*** 1.2858*** 1.3137***

(.09950) (.1326) (.1589)
γ .2561*** .2930***

(.0667) (.0937)

Log likelihood -3179.69 -2876.61 -2875.43 -2882.64 -2844.25 -2843.58

This table shows results from estimating versions of Equation (A-1) on the baseline sample. The

dependent variable is an indicator for whether the participant chose a given project. All models

include participant fixed effects. Standard errors are clustered at the participant level: * p < .10,

** p < .05, *** p < .01.
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C Additional Figures and Tables

Table A6: Effects of Positive and Negative Skewness

(1) (2)
Project choice Project choice

Avg. score 0.96*** 1.02***
(0.067) (0.19)

Score variance 0.097*** 0.054
(0.035) (0.12)

Score skew 0.17*** 0.73
(0.050) (1.17)

Skew sample Neg. skew Pos. skew
Clusters 313 230
N 8879 2071

This table shows results from estimating Equation (1)

on the baseline sample. The dependent variable is an

indicator for whether the participant chose a given

project. All models include participant fixed effects.

Standard errors are clustered at the participant level:

* p < .10, ** p < .05, *** p < .01.
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Figure A1: Funding Reversals Under NIH and Scientist Ranking Procedures: Separate Es-
timates by Study
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(a) Overall sample preferences
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(b) Expert preferences

Notes: This figure shows the reversal rate for project funding as a function of the payline (fraction of
projects that get funded) for four different sets of project scores (Study 1 from this paper, the two studies
from Lane et al. (2022b), and Pier et al. (2018)). The reversal rate is the fraction of studies that change when
they are funded under a mean-only ranking versus under the mean and variance-based ranking. Panel (a)
shows the reversal rate when using the estimated preferences from the baseline results using the full sample
of scientists. Panel (b) shows the reversal rate when using the preferences of scientists who are relative
experts (MeSH match 1 standard deviation higher than average).
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Table A7: Preferences for Project Scores

(1)
Project choice

Score of 1 -0.20***
(0.026)

Score of 2 -0.18***
(0.022)

Score of 3 -0.092***
(0.021)

Score of 4 0.014
(0.019)

Score of 6 0.067***
(0.023)

Score of 7 0.074***
(0.011)

Score of 8 0.13***
(0.014)

Score of 9 0.22***
(0.016)

Clusters 313
N 11268

This table shows results from

estimating Equation (1) on

the baseline sample where

the right-hand-side variables

(project attributes) are each

level of possible project scores.

The dependent variable is an

indicator for whether the par-

ticipant chose a given project.

All models include participant

fixed effects. Standard errors

are clustered at the participant

level: * p < .10, ** p < .05, ***

p < .01.
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Table A8: Heterogeneity: Demographics, Preferences, and Experience

(1) (2) (3) (4) (5) (6)
Project
choice

Project
choice

Project
choice

Project
choice

Project
choice

Project
choice

Avg. score 0.81*** 0.83*** 0.78*** 0.91*** 0.74*** 0.84***
(0.069) (0.050) (0.051) (0.066) (0.073) (0.067)

Score variance 0.027 0.11*** 0.082** 0.088* 0.011 0.12***
(0.048) (0.033) (0.034) (0.046) (0.045) (0.046)

Subgroup Female Male Risk Not risk Least Most
averse averse experience experience

Clusters 91 222 211 102 103 105
N 3276 7992 7596 3672 3708 3780

This table shows results from estimating Equation (1) on the baseline sample. The
dependent variable is an indicator for whether the participant chose a given project.
All right-hand-side variables are standardized. The models include participant fixed
effects. Standard errors are clustered at the participant level: * p < .10, ** p < .05,
*** p < .01.
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D Experiment Instructions and Instruments

Below are screenshots of the main instructions and choice scenarios shown to the partic-

ipants. The full experimental instrument can be found at the following links: link for Study

1 and link for Study 2. Note that the full instruments includes all versions. In practice, a

participant was randomized into seeing only four project choice scenarios in Study 1 or two

portfolio choice scenarios in Study 2.

Figure A2: Experimental Instrument: Welcome Screen

Notes: This figure shows the welcome screen that greeted participants.
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Figure A3: Experimental Instrument: Choice Scenario Main Instructions

Notes: This figure shows the main instructions that participants were shown prior to making any choices in
the first experiment.
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Figure A4: Experimental Instrument: Choice Scenario Example

Notes: This figure shows an example of the choices participants were asked to make. In the top box, the
blue, underlined proposal links would show proposal abstracts if the participant hovered over them. After
choosing their top and bottom ranked projects, in a follow-up screen participants were asked to rank the
remaining two projects.
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Figure A5: Experimental Instrument: Portfolio Choice Scenario Main Instructions

Notes: This figure shows the main instructions that participants were shown prior to making any portfolio
choices in the second experiment.
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Figure A6: Experimental Instrument: Portfolio Choice Scenario Example

Notes: This figure shows an example of the choices participants were asked to make in Study 2, the portfolio
choice scenario. The budget remaining changed as projects were selected. After making these choices, the
participant was prompted to say which project they would add if the budget were expanded.
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