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1 Introduction

A large literature has established that harsh environmental conditions and adverse shocks

early in life affect children’s health, development, and long-run prospects. This suggests that

the experiences of poverty, hardship, and deprivation—seen around the world today—hinder a

society’s ability to accumulate human capital and achieve the growth necessary to escape these

hardships.

Yet, growth is not solely determined by the average human capital level but is also sig-

nificantly influenced by the contributions of outstanding individuals (Jones and Olken, 2005).

These contributions include the advancement of new technologies by inventors, the establish-

ment of new firms by entrepreneurs, the development of new governance and legal frameworks

by policymakers, and the advocacy for cultural and political reforms by leaders of social move-

ments. We refer to these as “tail outcomes” in which individuals have transformative and

lasting impacts on their society. Despite their pivotal role, a significant gap in empirical evi-

dence persists regarding the influence of material or environmental hardships on the emergence

of such figures.

In this paper, we study whether shocks early in life—the sort shown in the environmental

literature to affect average infant health and development1—have long-run effects on the emer-

gence of history-shaping individuals. To this end, we combine weather data back to 1790 with

the Human Biographical Record (HBR), a comprehensive dataset of more than seven million

notable individuals across recorded human history. We use this data to identify individuals’

state and year of birth, and use variation in weather across states and years to ask whether

harsh winters (which drive mortality, both today and historically) reduce the number of people

born in a particular state-birth-year cohort who go on to shape history.

Despite evidence that harsh environmental conditions harm infant development, there are

four reasons why they might not reduce the long-run leadership potential of a given birth cohort.

First, elites are disproportionately drawn from well-off echelons of society (Nekoei and Sinn,

2021b) and thus better insulated from the environmental shocks (Basu, 2009; Chakma et al.,

2023). Second, if history is more determined by aggregate structural forces than the influence

of any particular individuals, as many historians contend (Butterfield, 1931; Carr, 1961), then

shocks like the ones we study would not reduce the number of individuals subsequently ap-

pearing in the historical record. Third, early adversities can be pivotal, potentially enhancing

tail outcomes. Notables ranging from Sheldon Adelson and Malcolm X have attributed their

character and viewpoints to their upbringing in adversity. Finally, shocks affecting an entire

cohort might increase the resources (such as teachers’ time and attention) available to the most

1See Currie and Almond (2011); Xu et al. (2012); Graff Zivin and Shrader (2016); Isen et al. (2017).

2



promising individuals. Thus, it is ex ante ambiguous whether adverse conditions would amplify,

diminish, or leave unchanged tail outcomes.

To understand the long-run effects of extreme weather, we compile data on daily average

temperatures across US states since 1790. We combine this with date on: (i) mortality spanning

1900 to 1960, (ii) earnings and educational attainment for state/birth-year cohorts 1900–1960,

and (iii) individuals born in each state-birth-year cohort from 1790–1960 who go on to make

history, as measured by appearing in the Human Biographical Record (Nekoei and Sinn, 2021a).

We explore the effects of harsh winters by estimating how cold weather affects contempo-

raneous mortality and long-run outcomes of those born in those conditions. Our regressions

include state and year fixed effects, as well as state-by-time-period specific trends (which we dis-

cuss below). These controls are sufficient to isolate exogenous shifts in extremely cold weather,

as evidenced by the fact that we find no placebo effects of extreme cold on the outcomes of

cohorts not yet born (i.e., “pre-shock trends” are parallel).2 Interestingly, we also generally find

zero effects on the outcomes of cohorts who were one or more years old at the time of the shock.

This is consistent with evidence that the first year of life (as well as during pregnancy) is the

period at which humans are most fragile and where environmental shocks are most important.

Consistent with the existing literature (Barreca et al., 2016), we find that colder weather

(more days below 5°C) significantly increases mortality. Given that mortality is an extreme

health outcome—and the only health outcome that is reliably measured back to 1900—we

interpret this as evidence that very cold weather is an adverse health shock more broadly. That

is, we do not interpret our subsequent effects as operating solely through the increased mortality

caused by the extreme cold.

The cohorts born in cold years have significantly worse adult outcomes, including years of

education and average earnings. Importantly, we find larger effects at the “top” of the outcome

distribution: effects are larger on the probability of attaining the highest levels of education

observable in our data (roughly 1-4% of the population in any given year) than are the effects

on years of education. Likewise, effects are larger on the 90th percentile of earnings than on

median earnings. This suggests that extreme environmental conditions are especially important

for stunting the advancement of the most promising members of society.3

2Although formal weather forecasts existed during much of the sample period, they were generally of low
skill and for short horizons prior to the 1970s (Teague and Gallicchio, 2017), limiting the type of anticipatory
reduction on temperature-related mortality observed in Shrader et al. (2023).

3These larger effects at the top of the distribution all refer to the outcome distribution and not the dis-
tribution of baseline advantage. It is more common in this literature to look at heterogeneity by baseline
characteristics (Basu, 2009), with a common conclusion that it is the least well-off who are most affected by
environmental shocks. None of our results contradict this conclusion. The fact that our effects are larger at the
top than the middle of the outcome distribution does not contradict the possibility that they are larger at the
bottom than the middle of the distribution of background characteristics.
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We then estimate the effects on the number of individuals born in a given state and year who

go on to appear in the HBR. We find that a one standard deviation increase in the number of

very cold days leads to a 1% decrease in the number of elites to emerge from the cohort. Elites,

of course, make history for all sorts of different reasons. We are particularly interested in the

sorts of elites who shape history and institutions and are most likely to contribute to long-run

economic development, and so we also focus specifically on political elites. Here, we see that

a one standard deviation increase in cold days decreases the number of political elites by 2%.

Interestingly, when we look at these effects over time, we see that the effects of extreme weather

fell considerably during the 19th and early 20th centuries, ultimately disappearing by the middle

of the 20th century. We see this as an important sign of progress. Finally, we show that a cohort

becomes more likely to produce elites when extreme weather affects its neighboring states or

neighboring birth cohorts, although this effect is not statistically significant. This suggests there

is some historical substitution wherein a dearth of potential leaders in one cohort is partially

offset by leaders from other cohorts.

Our results shed new light on the long-run, dynamic effects of climate on human society.

Previous work has documented that environmental shocks have a range of effects on contempo-

raneous health and human capital outcomes including mortality (Deschênes and Moretti, 2009;

Carleton et al., 2022), productivity (Graff Zivin and Neidell, 2012), and education (Graff Zivin

et al., 2018; Park et al., 2020) among other outcomes (Graff Zivin and Neidell, 2013; Graff Zivin

and Shrader, 2016). These effects can be particularly severe for children in utero or those ex-

posed at very young ages (Almond and Currie, 2011; Currie and Almond, 2011). More recent

work has linked these childhood environmental shocks to later life outcomes for those directly

affected (Isen et al., 2017) and their descendants (Colmer and Voorheis, 2020). Our results show

that for a range of outcomes, effects at the top of the distribution are larger than those found

on the average levels of those outcomes, which are more commonly studied in the literature.

Our results also contribute to the literature studying the long-run determinants of devel-

opment, and especially work on “poverty traps” in which initial conditions of poverty and

disadvantage perpetuate themselves in the long run. While numerous studies identify mecha-

nisms by which poverty traps might emerge (Dasgupta and Ray 1986; Azariadis and Drazen

1990; Banerjee and Newman 1993; Arthur 1994; Lorentzen, McMillan, and Wacziarg 2008;

Haushofer and Fehr 2014; see Azariadis and Stachurski 2005 and Ghatak 2015 for reviews), to

our knowledge, the possibility that poverty might stifle the emergence of history-making elites

is a new idea.4 This is despite growing awareness among economists that the direct influence of

4Most closely related, Lorentzen et al. (2008) provide a model in which elevated mortality can reduce
long-run growth, although the mechanism is through discount rates and savings behavior, and Lloyd-Ellis and
Bernhardt (2000) provide a model in which poverty traps can persist if growth-generating entrepreneurs are
rare, although the mechanism is through credit access. Our results unite these ideas, suggesting that elevated
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extraordinary individuals matters for important aggregate outcomes and meaningfully shapes

the direction of society (Jones and Olken, 2005; Bassi and Rasul, 2017; Dippel and Heblich,

2021; Bai, Jia, and Yang, 2023; Buggle and Vlachos, 2023; Assouad, 2023).

The remainder of the paper is organized as follows. In Section 2 we discuss our data, and in

Section 3 we discuss our methods. Section 4 presents all of our results, and Section 5 concludes.

2 Data

2.1 Weather

Our weather data come from Berekeley Earth—a high-resolution, gridded temperature

dataset (Rohde et al., 2013). The Berkeley Earth dataset is well-suited to our application

because it incorporates more historical temperature observations than any other available tem-

perature dataset. In the dataset, temperature measurements for some land areas in the US go

back to the 1750s, with consistent coverage across the entire US by the mid to late 1780s. We

restrict the sample to observations from 1790 to 1960. The data are on a 1 by 1 degree latitude-

longitude grid. We aggregate the gridded measures to the state level following a similar practice

to other studies of weather impacts in the US (e.g., Schlenker and Roberts 2009; Barreca et al.

2016; Carleton et al. 2022). First, for each grid cell, we calculate the fraction of days in the year

that fall within eight temperature ranges (< 0◦C, 0–5◦C, 5–10◦C, 10–15◦C, 15–20◦C, 20–25◦C,

25–30◦C, and > 30◦C). Second, we merge each grid cell with gridded measures of population

from HYDE version 3.2 (Klein Goldewijk et al., 2017). We use the nearest decadal measure

of population to the year of weather being merged (e.g. weather from 1794 is merges with the

population grid from 1790). Third, we calculate population-weighted averages of the grid-level

measures within each state to arrive at the final state-by-year dataset used for estimation.

2.2 Mortality

Our data on mortality come from Barreca et al. (2016). They compile vital statistics data

back to 1900 for their study of extreme heat and mortality, and how this relationship has

changed over time. This data is an unbalanced panel. As the authors discuss, only 11 states

reported mortality in 1900, but all began reporting by 1933. The data we use is all-cause,

all-age mortality. Cause-specific and age-specific mortality rates are only available starting in

1960. By this time, extreme weather had little effect on mortality (Barreca et al., 2016), and

these post-1960 birth cohorts are too recent for us to examine long-run effects on earnings and

mortality might reduce growth by preventing the emergence of some rare growth-generating entrepreneurs.
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elite status. Thus, we do not systematically explore cold weather effects by age but assume

that the types of weather shocks that increase total mortality have some effects on the health

of infants (regardless of whether they increase the mortality of those infants).

We should note that our primary use of mortality data is to establish that extreme cold

has meaningful effects on health. Mortality is obviously a very extreme health outcome. When

we estimate the effects of cold weather on mortality, and then subsequently on education,

earnings, and status as a history-making elite, we are not assuming that all of the long-run

effects operate through increased mortality. Rather, we are assuming that any weather shock

significant enough to affect mortality likely has broader effects on population health, and that

these sorts of health shocks during a person’s year of birth likely have long-run effects on that

person’s development.

2.3 Earnings and education

Our data on earnings and education outcomes are taken from the decennial census, accessed

via the Integrated Public Use Microdata Series (IPUMS; Ruggles et al. 2023). We use four

variables from the census: earnings (income from wages and salary), educational attainment,

state-of-birth (which is reported in all years), and year of birth (which is inferred from age and

year of interview). Throughout the paper, all of our state-level regressions refer to state-of-

birth and not state-of-residence at the time of the interview. Since earnings only began being

collected in 1940, we measure these outcomes at age 40, starting with the 1900 birth cohort.

For education, we measure years of education and a notion of “elite” education, intended

to reflect the top of the education distribution. This measure is not consistent across years.

It is based on the top one or two categories in the census’ educational attainment variable,

but those categories change over time. For instance, in 1940 and 1950, the highest category

was “5 or more years of college” while in 2010 the highest category was “doctoral degree.”

In Appendix Table A1, we list the categories used during each year, but in general, our elite

education variable covers 1-4% of the population.

For earnings, we measure average earnings (as well as various percentiles) by aggregating

up to the state-by-birth-year cohort level, and only then taking logs of the average. We do

not make top code adjustments because our identifying variation is within-cohort (i.e., all

regressions include year fixed effects).

We aim to measure education and earnings outcomes at age 40. Of course, the census is

only conducted every 10 years, and so most birth cohorts are not observed at exactly age 40.

For instance, those born in 1923 or 1933 are only ever observed at age 37 and 47, not at age

40. Thus, for each state-by-birth-year cohort, we estimate age-40 earnings and education by
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interpolating across ages for the age immediately before 40 and the age immediately after 40.

Since we interpolate based on only two observations, this is equivalent to a weighted average

of those two observations. For example, for the 1923 or 1933 birth cohorts, we would calculate

ŷ40 as y37 +
3
10

(
y47 − y37

)
= 7

10
y37 +

3
10
y47.

Note that we only interpolate across ages within birth cohorts. We never interpolate across

birth cohorts. Thus, our measures for consecutive cohorts are independent from one another.

This is important to keep in mind when we explore the timing of extreme weather effects across

cohorts. There is no mechanical reason why outcomes of consecutive cohorts would be linked.

2.4 History-making elites

Our data on history-making elites comes from the Human Biographical Record (HBR),

described in detail in Nekoei and Sinn (2021a). The HBR is a comprehensive dataset that

combines information from traditional encyclopedias, such as Britannica, with the extensive

structured and unstructured data available in Wikipedia and Wikidata. Wikidata is a collab-

orative, multilingual knowledge base that provides structured data to complement Wikipedia

articles. The HBR extracts and harmonizes biographical information from these diverse sources

using advanced machine learning techniques.

Data on an individual’s birthplace in the US is aggregated at the state level and involves

the following steps. Initially, we gather from all sources all potentially relevant locations that

indicate an individual’s birthplace. These locations are transformed from their original level of

aggregation (coordinates, town, county...) to the US state-level. Discrepancies in the data, e.g.

an individual having locations across two separate states, are settled through a majority vote

mechanism.

Our methods for extracting the year of birth and occupations involve some modifications.

The process of extracting the year of birth follows a similar process without the need for an

aggregation template. To classify individuals as politicians we employ a BERT neural network

(Devlin et al., 2019), a state-of-the-art model for natural language processing tasks, to analyze

the text across all language versions. Each language and encyclopedia provides us with a single

probability of the individual being a politician which we aggregate into a single measure.

The HBR also provides several measures to estimate the level of eliteness in the data. In

particular, it contains the number of languages in which an individual appears on Wikipedia,

the length of the article measured in number of words, and the pagerank of each individual

(Brin and Page, 1998). Among these, we focus on individuals who appear in multiple languages

as our primary proxy for particularly important individuals, although in the appendix we also

include heterogeneous effects by pagerank.
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2.5 Statehood

Our data on weather and elites includes observations from before states achieved statehood.

HBR maps the place of birth to a current state independently of whether it was not a state

at the time. For instance, HBR reports that the poet Sarah Dyer Hobart was born in 1845 in

Wisconsin as she was born in Otsego, Wisconsin, although Wisconsin did not become a state

until 1848. Berkeley Earth does the same for temperature.

We define our sample based on the weather data from Berkeley Earth. We begin including

a “state” in our data as soon as weather data is available, regardless of whether that “state”

was officially a state yet. This results in an unbalanced panel, as well as a slight abuse of the

terminology “state.” In our data, 34 states (including the District of Columbia) are included

from 1790 on (despite there being only 13 states at the time), 42 from 1796 on, and 49 from 1821

on. Alaska and Hawaii are the last states to enter our sample, in 1828 and 1883, respectively.

2.6 Summary statistics

In Table 1 we present the summary statistics for our main measures. For each variable,

we present the mean and standard deviation, as well as the interquartile range and the 90th

percentile. The standard deviations we present are raw, unconditional standard deviations

across state-years in our data. However, many of these outcomes show significant trends. For

instance, average years of education is increasing over time, but since our regressions incorporate

year fixed effects, this over-time variation plays no role in identification. Thus, we always

interpret the magnitude of our estimates based on a “residualized” standard deviation. To

do this, we first adjust the variable by removing the influence of all fixed effects, trends, and

controls included in our main analysis (which we will discuss below), and we then calculate

the standard deviation of the residual outcome. This residualized standard deviation is always

much lower.

3 Methods

3.1 Estimating equations

We use two primary specifications to estimate the effects of extreme weather on outcomes.

Our first specification closely follows the existing literature and flexibly estimates effects of

different weather conditions on outcomes. Specifically, we regress some outcome Yst at the

state (s) by year (t) level on temperature bins denoting the fraction of days in the year that
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Table 1: Summary statistics

(1) (2) (3) (4) (5) (6)

Variable Mean
Standard dev. Percentiles

Raw Residual 25 75 90

Available 1790-1960

Cold days 3.5 1.8 .15 2.1 5 5.2
Num. of elites (IHS) 4.2 1.2 .24 3.4 5.0 5.7
Num. political elites (IHS) 3.1 .9 .35 2.5 3.7 4.2

Available 1900-1960

Log mortality 10.7 .9 .028 10.1 11.4 11.9
Years education 11.1 2.9 .15 10.2 13.2 13.5
Elite education .028 .014 .004 .018 .037 .048
Log earnings 8.9 1.2 .050 8.0 10.0 10.2
Log 90th pctl. earnings 9.9 1.1 .056 9.1 10.9 11.1

All statistics are weighted by population. “IHS” denotes inverse hyperbolic sine
(we study an alternative normalization in Appendix Table B2). Residual stan-
dard deviation is based on first residualizing the variable of state fixed effects,
year fixed effects, state-by-period linear trends, and temperature bins of width
5°C for temperatures 5°C and above. Note that all of these are controls in
our main specification. For state-by-period trends, we define time periods to
be approximately 35 years long. See Section 3.1 for further discussion. Aside
from mortality, all variables are approximately a balanced panel (8,269 observa-
tions 1790-1960, 2,989 observations 1900-1960). Mortality is available for 76% of
state-years from 1900-1960. Mortality is defined as the total number of deaths
(all causes, all ages). Cold days can be interpreted as the number of months
with an average temperature below 5°C (see Section 3.2). See appendix for
definition of elite education (which changes over time as the census changes its
education questions). The number of elites refers to the number born in the
given state-year (which includes zeros). Note that in calculating log earnings,
we first calculate mean age-40 earnings by state-by-birth-year cohort, and we
then take logs of the mean. Thus, we do not have to worry about zero earnings,
since no state-by-birth-year cohorts have zero average earnings.
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had an average temperature fall within a given range:5

Ys,t = αs + δt + µs,T (t) + γs,T (t)t+
∑
k

βkTMEANk
s,t + εs,t (1)

In equation (1), the key variables of interest are the variables TMEAN1, TMEAN2, ...,

TMEANK , which capture the fraction of all days in the year which had an average temperature

within a particular range. We use temperature ranges from less than 0°C, 0-5°C, 5-10°C, ...,
25-30°C, more than 30°C. Of course, because every day must fall into one of these ranges, they

sum to one, and one range must be omitted as a normalization. We omit the 25-30°C range.6

Thus, the coefficient on each TMEANk variable can be interpreted as the effect of having more

days in that temperature range rather than in the 25-30°C range.

We first estimate this equation with mortality occurring in year t as the outcome. Previous

work by Barreca et al. (2016) has shown that mortality has a “U-shaped” relationship with

temperature during our sample period—with both hot and cold temperatures leading to elevated

mortality. Our first estimates allow us to replicate this finding using our sample and data.

We then estimate the effect of weather on other outcomes that measure human capital and

production of elites for different state-by-birth-year cohorts. In those specifications, t refers to

year of birth.

The specification shown in equation (1) includes state and year fixed effects to account for

time-invariant, cross-state differences as well as aggregate time trends. However, some of the

outcomes we are interested in are measured over long time periods (e.g., the 171 years from

1790–1960). It seems unrealistic to expect state fixed effects to be constant over this full period,

and also unrealistic to assume they could be captured by a parsimonious state-specific linear or

quadratic time trend. Instead, we assume that they are linear only over a relatively short period

of time. Thus, we divide our full sample into five periods of approximately 35 years: 1790–

1825, 1826–1860, 1861–1895, 1896–1930, and 1931–1960. In equation (1), these time periods

are represented by T (t). In all of our regressions, we include state-by-period specific linear time

trends
(
γs,T (t)t

)
. This assumes linearity in states’ secular outcome trends only for a period of

roughly 35 years at a time. In Appendix Table B3 we show similar results from using different

lengths of “time periods,” quadratic instead of linear trends, or using decade-by-Census-division

fixed effects. All are similar.

5This empirical strategy has been widely used in economics papers studying the effect of temperature on a
variety of outcomes (Deschênes and Moretti, 2009; Graff Zivin and Neidell, 2014; Barreca et al., 2016; Graff Zivin
et al., 2018). The results are similar to those found by alternative flexible estimation strategies using splines or
polynomials (Gasparrini et al., 2015; Carleton et al., 2022).

625-30°C is approximately the temperature range that maximizes agricultural output (Schlenker and
Roberts, 2009). Mortality is minimized at or slightly below this range (Wilson et al., 2023).
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The specification in equation (1) is flexible with respect to temperature because it estimates

the effects of each potential temperature bin, relative to a temperature in the 25–30°C range.

However, it only estimates cumulative effects of temperature up to one year from the time of the

temperature shock.7 This ignores the possibility of cross-cohort spillovers (e.g., the possibility

that negative effects on one cohort might increase or decrease the opportunities available to

previous and subsequent cohorts) or effects on slightly older children (e.g., that individuals

might be affected by extreme weather when they are one year old, and not only the weather

during the year of their birth). It also does not allow for the inspection of pre-trends.

For this reason, we also use a specification that is flexible in time. In doing so, we focus

only on one specific temperature coefficient: ColdDayss,t which captures the fraction of days

with an average temperature below 5°C. That is, ColdDays pools the two lowest temperature

bins included in equation (1). We focus on these two temperature bins because we typically

find that those cold temperatures are where effects are the largest. Prior economics literature

has focused on the highest temperature bins (i.e., the number of very hot days rather than the

number of very cold days). Doing so is obviously relevant for understanding the consequences

of climate change going forward. We focus on cold days for two reasons. First, throughout the

historical period for which data is available, cold weather has consistently had a large effect on

mortality in the US, a result that we corroborate and also find generally holds true for other

outcomes. Second, during our sample period very cold days are more common than very hot

ones (including after controlling for the fixed effects and time trends that we use). Thus, there

is more identifying variation in the colder temperature bins than there is in the hotter ones.

In order to study the timing of our estimated effects of extreme cold, we use the following

specification:

Ys,t = αs + δt + µs,T (t) + γs,T (t)t+
3∑

τ=−3

θτColdDayss,t−τ +
∑
k

βkTMEANk
s,t + εs,t (2)

where we obviously omit the lowest two temperature bins (which are subsumed into ColdDays)

from the vector of temperature bins given by TMEANk. Here, the main coefficients of interest

are the θτ coefficients showing how outcomes are affected by the leads and lags of ColdDays.

How should one think about these leads and lags? This depends on the outcome. For

example, for mortality, it seems unlikely that mortality is affected by extreme weather that

has not occurred yet.8 In this case, the θτ coefficients should be zero for the leads (τ < 0),

7Previous research argues that this is sufficient to capture intertemporal dynamics in mortality (sometimes
called harvesting; see Deschênes and Moretti 2009).

8Particularly for weather that occurs sufficiently far in advance. One could imagine, for example, that
temperature-driven crop losses documented in Schlenker and Roberts (2009) could affect mortality in a relatively
autarkic, agrarian area.
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and evidence to the contrary would suggest a violation of our identification assumptions, as we

would expect, for instance, if our state-specific time trends are not correctly specified. For other

outcomes, however, it may well be the case that θτ is non-zero for the leads. For instance, when

we look at political elites, then someone must become governor of the state. A decrease in the

number of political elites from one cohort directly affected by extreme weather might increase

the elite status among younger cohorts who had not been born yet at the time of the shock.9

Thus, depending on the outcome, the leads and lags may be informative about violations of

the identification assumptions, or they may be substantive results in and of themselves.

3.2 Identifying variation

Our identifying variation comes from changes from year to year in the number of days

falling into various bins of average temperature, net of year fixed effects, state fixed effects,

and state-by-period linear time trends. Exactly how much identifying variation is there, and

which temperature bins show the most identifying variation? To answer this, we regress all

temperature bins on the fixed effects and trends, calculate the residuals, and then calculate the

standard deviation of these residuals. We do this separately for each temperature bin and for

our 1790–1960 and 1900–1960 samples. The results are displayed in Figure 1.

Our measure of temperature is the fraction of all days with an average temperature falling

within the given range. Thus, it ranges from zero to one. Throughout the paper, we multiply

this measure by 12 (the number of months in a year) so that it ranges from zero to 12, and

magnitudes can be interpreted as the effect of one additional month of temperatures in a given

range. For most temperature bins, the residual standard deviation is about 0.5, or roughly two

weeks of temperatures. It is slightly smaller for temperatures below 0°C (one of the two bins we

mainly focus on) and temperatures in the 25-30°C range (which we use as our normalization),

and much smaller (only 0.1) for very hot temperatures (above 30°C).10

The literature on the consequences of extreme temperatures has mostly focused on extremely

hot temperatures rather than extremely cold ones, partly because hot temperatures are so

important for understanding climate change. For our purposes, there are four advantages of

9Below, we include increasingly stringent fixed effects to test for evidence on spillovers across similar states
or adjacent birth cohorts. Consistent with spillovers, we find that the estimated effects of cold weather become
larger when compared to spatially or temporally adjacent cohorts.

10In the summary statistics in Table 1 above, we reported a residual standard deviation for cold days that
was much smaller than what is seen in Figure 1. This is because all of our regressions control for the other
temperature bins, and therefore the ultimate identifying variation in cold days that we use is variation that has
been residualized of the fixed effects and trends and the other temperature bins, while what we show in Figure
1 is residualized only of the fixed effects and trends. Unsurprisingly, the distribution of other temperatures are
very useful for predicting cold weather in the state-year, and so the residual variation that identifies our main
effects in the regressions (which control for those temperature bins) is substantially less.

12



Figure 1: Identifying variation by temperature bin
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specific levels and linear trends). Temperature variables reflect the fraction of days in the year with an average
daily temperature in a given range, multiplied by 12 so as to be interpreted as the number of months in the
range.

studying extreme cold rather than extreme heat. First, historically, cold weather has been

much more common than hot weather, although extremely hot days have become much more

common since 1960. In our data, there are 36 times as many days below 0°C as there are

above 30°C. While some of these are stable and predictable across years, and thus not useful

for identification, the residual standard deviation of cold days is still four times that of hot

days. Second, cold days are more likely to be a package of cold temperature and other adverse

weather events like snow or ice, which exacerbates their health effects.11 Third, because cold

temperatures are meteorologically less predictable than hot days, they are more difficult to

forecast, making it more difficult for individuals to prepare for and adapt to (Shrader et al.,

2023). Finally, the effects of extreme cold have been far more stable over time (see Barreca

et al. (2016) for evidence on how the effects of hot days have changed over time).

All of these are statistical advantages of studying the consequences of extreme cold rather

than extreme heat. These statistical advantages are particularly important for us because we

are interested in studying a rare event (becoming a history-making elite) over a very long period.

We should note that the primary contribution of our paper is not to document whether one

11If our primary interest were in the effect of cold temperatures specifically, or some other specific weather
characteristic, then we would need to control for these non-temperature variables. However, we are instead
interested in the effects of extreme cold broadly, including its various non-temperature manifestations like
precipitation.
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particular type of extreme weather matters more for health than another, but to document how

extreme weather events already known to be important for health are also important for rare

events and tail outcomes that are important for long-run growth and economic development.

Given that we focus on cold days, it is important to understand where the identifying

variation comes from. To answer this question, we again regress cold days on our fixed effects

and trends, calculate the residual number of cold days, and then calculate the standard deviation

of that residual at the state-level. The results are displayed in the maps in Appendix Figure B1.

The geographic distribution of our identifying variation is fairly similar for both time periods

and is dispersed across the country. We are not identified by only one state or region. However,

it should be noted that neither the deep south (where cold days are very rare) nor the northeast

(where cold days are very common) contribute much identifying variation.

4 Results

4.1 Effects on mortality

We begin by estimating the effects of extreme weather on mortality in order to establish

which sets of weather events have sizable health effects. Our claim is not that weather’s adverse

effects on earnings, education, and elite production operate entirely through increased mortality.

Rather, our view is that the effects of weather on health more broadly likely mirror its effects

on mortality, since that is one extreme indicator of health.

For most of our outcomes of interest, we must focus on birth cohorts before 1960 so that

we have time to observe adult (age 40) earnings and education, and to leave enough time for

people to begin to establish their impact on history. Thus, our main mortality estimates also

focus on the 1900-1960 period (since 1900 is the earliest year for which we have mortality

data). However, we should note that our mortality estimates for the longer period (1900-2004)

are much smaller because of the flattening of the temperature-mortality since 1960 shown by

Barreca et al. (2016).

In Figure 2, we present the effects of extreme weather on mortality. In Panel (a), we

show effects that are flexible by temperature bin. All magnitudes can be interpreted as the

effect of one additional month of days with average temperatures in the given bin, rather than

average temperatures in the 25-30°C bin. We find that an additional month of weather with

average temperatures below 5°C weather increases mortality by 2-3%.12 The effects decline

such that any temperatures between 10–30°C have roughly equal implications for mortality,

but temperatures above also substantially increase mortality. As noted above, however, there

12As we show in Figure 1, one month of cold weather is roughly 2 standard deviations of the residuals.
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is far more identifying variation in cold days than hot days, and the mortality effects of cold

days are slightly larger than those of hot days.

Figure 2: Extreme weather effects on mortality
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Notes: Dependent variable is log mortality in the given state during the year (almost balanced panel, 1900–
1960). All estimates are based on specifications that control for year fixed effects, and state-by-35-year-period
fixed effects and linear trends; are population weighted; and in which standard errors are clustered at the state
level. Figures plot estimates and 90% confidence intervals. All temperature variables reflect the fraction of
days in the year with an average daily temperature in a given range, multiplied by 12 to be interpretable as
the effects of one month of days with such a temperature. Panel (a): See equation (1) for estimating equation.
Panel (b): See equation (2) for estimating equation.

Panel (a) is flexible with respect to temperature, but only estimates contemporaneous effects

on mortality during the year of the extreme weather shock. In Panel (b), we focus specifically

on cold days (average temperature below 5°C), but present leads and lags of this extreme

temperature, which allow us to trace the effects over time. We generally find that mortality

is only correlated with contemporaneous extreme weather, and shows little correlation with

extreme weather from earlier or subsequent years. This suggests that our identification strategy

does isolate exogenous variation in extreme weather phenomena across years which is separate

from broader health-related trends that affect longevity.

Note that this is not a trivial identification test. Mortality and weather have both changed

dramatically over time, and differently in different states, making spurious correlations very

plausible. To illustrate this, in Appendix Figure B2 we replicate Panel (b) of Figure 2 but

exclude the state-by-period specific trends. This shows dramatic pre-trends and strong correla-

tions between mortality and both future and past extreme weather events. Clearly these results

instill suspicion, and so we consider it important to account for heterogeneous (across states)

secular trends. Conditional on including these trends, however, we have found that our results
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are quite stable with respect to different definitions of a time period, different polynomials, or

different ways of defining regional trends and shocks (see Appendix Table B3).

4.2 Effects on education

Having replicated results showing that extreme weather does affect health, we now turn

to its consequences for the adult educational attainment of the children born during the cold

weather year. In Figure 3, we find that an additional month of very cold weather reduces years

of education by roughly 0.04 years. These effects are somewhat larger for men than women.

Figure 3: Extreme weather effects on years of education
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Notes: Dependent variable is average years of education at age 40 for individuals born in the given state-of-
birth birth-year cohort (balanced panel, 1900–1960). All estimates are based on specifications that control for
year fixed effects, and state-by-35-year-period fixed effects and linear trends; are population weighted; and in
which standard errors are clustered at the state level. Figures plot estimates and 90% confidence intervals. All
temperature variables reflect the fraction of days in the year with an average daily temperature in a given range,
multiplied by 12 to be interpretable as the effects of one month of days with such a temperature. Panel (a):
See equation (1) for estimating equation. Panel (b): See equation (2) for estimating equation.

However, society may particularly rely on those with very high levels of education, who

make up a large share of those in fields related to medicine, research and innovation, the

determination of law and policy, etc. For this reason, we also focus on the fraction of the cohort

attaining an “elite” education (roughly 1–4% of the population). In Figure 4, we also find a

significant decline caused by extremely cold weather. Here, the effects are roughly twice as

large for men as for the full population, as might be expected given the exclusion of women

from many professional and doctoral programs during these birth cohorts.

How do the magnitudes of these effects compare with one another? A one standard deviation

increase in cold days implies a decrease in years of education that is roughly equal to 4.7% of
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Figure 4: Extreme weather effects on attaining an “elite” education
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Notes: Dependent variable is share of individuals holding “elite” education at age 40, roughly 1–4% of the pop-
ulation (see Table A1 for definition) for individuals born in the given state-of-birth birth-year cohort (balanced
panel, 1900-1960). All estimates are based on specifications that control for year fixed effects, and state-by-35-
year-period fixed effects and linear trends; are population weighted; and in which standard errors are clustered
at the state level. Figures plot estimates and 90% confidence intervals. All temperature variables reflect the
fraction of days in the year with an average daily temperature in a given range, multiplied by 12 to be inter-
pretable as the effects of one month of days with such a temperature. Panel (a): See equation (1) for estimating
equation. Panel (b): See equation (2) for estimating equation.
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a residualized standard deviation. The same increase in cold days, however, implies a decrease

in elite education that is about 7.6% of a standard deviation. Thus, the effects of extreme

weather appear to be larger for the attainment of elite education than for overall educational

attainment, although the difference between these estimates is not statistically significant.

4.3 Effects on earnings

Do these effects also translate into earnings effects? In Figure 5 we find that they do.

One month of cold weather implies a roughly 1% decrease in average earnings.13 Unlike for

education, however, we find that the effects are somewhat smaller for men than for women.

Figure 5: Extreme weather effects on earnings
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Notes: Dependent variable is log of average age 40 earnings for individuals born in the given state-of-birth
birth-year cohort (balanced panel, 1900-1960). All estimates are based on specifications that control for year
fixed effects, and state-by-35-year-period fixed effects and linear trends; are population weighted; and in which
standard errors are clustered at the state level. Figures plot estimates and 90% confidence intervals. All
temperature variables reflect the fraction of days in the year with an average daily temperature in a given
range, multiplied by 12 to be interpretable as the effects of one month of days with such a temperature. Panel
(a): See equation (1) for estimating equation. Panel (b): See equation (2) for estimating equation.

It is worth mentioning one concerning result shown in Figure 5. This is the only instance

in which we find large effects on an outcome that one would reasonably consider a placebo.

Specifically, we estimate that a birth cohort’s adult earnings are significantly reduced by cold

occurring two years before they were born (though not one or three before being born). This

13For a limited set of years (birth cohorts 1920-1940), the census reports quarter of birth, and we can estimate
separate effects by quarter of birth. While none of these estimates is significantly different from zero or from
one another, we do find that the largest effects are found among those born in October-December. This is
reassuring, as these are the cohorts for whom the cold weather was most concentrated during their infancy,
when children are most vulnerable to environmental conditions (see Appendix Table B1).
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“effect” is nearly as large as the effect we estimate for those born during the cold year (which we

consider to be the directly exposed cohort). While it is possible that the extreme cold weather

might have some spillover effects onto younger cohorts (for instance, by reducing the success of

their older siblings), we find it implausible that these spillover effects would be as large as the

direct effects on the cohort born during the cold year. This suggests some degree of caution in

interpreting our results, but at the same time, we are reassured that none of our other outcomes

show meaningful violations of this cross-cohort placebo test, and that our results are robust to

alternative reasonable specifications.

Table 2 shows that, like our estimated effects on educational attainment, the estimated

earnings effects are also concentrated at the top of the distribution. Specifically, we estimate

the effects of extreme cold on the log of mean earnings and of the 50th, 75th, and 90th percentiles

of the state-by-birth-year cohort earnings. We find effects on the 90th percentile that are 10

times as large as the (non-significant) effects on median earnings.

Table 2: Extreme weather effects on earnings percentiles

(1) (2) (3) (4)

DV: Log of Mean earnings Median 75th pctl. 90th pctl.

ColdDays -0.0110** -0.0011 -0.0097* -0.0115**
(0.0048) (0.0094) (0.0049) (0.0047)

R2 0.998 0.989 0.998 0.997
N 2988 2983 2985 2985

* p < .10, ** p < .05, *** p < .01. Dependent variable is log of of the
average (1), median (2), 75th percentile (3), or 90th percentile (4) of
age 40 earnings for individuals born in the given state-of-birth birth-
year cohort (1900-1960). All estimates are based on specifications that
control for year fixed effects, and state-by-35-year-period fixed effects
and linear trends; are population weighted; and in which standard
errors are clustered at the state level. All temperature variables reflect
the fraction of days in the year with an average daily temperature in
a given range, multiplied by 12 to be interpretable as the effects of
one month of days with such a temperature. See equation (1) for
estimating equation.

Similarly, in Figure 6, we estimate the effects on the probability of having zero earnings,

the probability of having positive earnings in the first quartile of the national cohort-specific

earnings distribution, etc. We find that extreme cold modestly (but not significantly) increases

the probability of zero earnings, significantly increases the probability of earnings in the 25th −
50th percentiles of the national earnings distribution, and significantly decreases the probability
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of earnings in the top quartile of the national distribution.

Figure 6: Extreme weather earnings effects across the distribution
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Notes: Dependent variable is the share of the state-of-birth birth-year cohort with zero earnings at age 40 or
positive earnings in each quartile (balanced panel, 1900-1960). All estimates are based on specifications that
control for year fixed effects, and state-by-35-year-period fixed effects and linear trends; are population weighted;
and in which standard errors are clustered at the state level. Figures plot estimates and 90% confidence intervals.
All temperature variables reflect the fraction of days in the year with an average daily temperature in a given
range, multiplied by 12 to be interpretable as the effects of one month of days with such a temperature. See
equation (1) for estimating equation.

In summary, then, we find that the largest of the adverse effects of extreme weather are

concentrated at the top of the earnings distribution (i.e., effects on the 90th percentile and the

probability of falling into the top quartile of earnings).

4.4 Effects on history-making elites

Given our evidence that extreme weather during one’s birth year reduces educational at-

tainment and earnings (with particularly large effects at the top of the outcome distribution),

it is natural to wonder whether it affects the probability that one leaves a significant mark on

society. Here, we estimate effects on the number of people from the state-by-birth-year cohorts

who go on to to make history, as proxied by their appearance in the HBR. It is worth repeating

that this is a different sample from the previous regressions because we can measure outcomes

for birth cohorts 1790-1960, rather than only 1900-1960 for the census-based outcomes.
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In Figure 7, we find that extreme weather significantly reduces the number of history-making

elites arising from a birth cohort. One month of extreme cold reduces the number of elites by

about 7%.14 We find similar effects on the number of elites whose Wikipedia page has been

translated into other languages. We see this as a proxy for having been particularly influential,

since those with a more limited influence are less likely to warrant translation.15 Throughout

the paper, we always consider these multi-language elites separately. We generally find very

similar point estimates, which are sometimes slightly smaller (as in Figure 7) and sometimes

slightly larger. This shows that the effects of extreme weather that we document are not driven

simply by the disappearance of a handful of marginal or unimportant historical figures.

Figure 7: Extreme weather effects on number of elites
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Notes: Dependent variable is inverse hyperbolic sine of number of history-making elites who were born in the
given state-of-birth birth-year cohort (balanced panel, 1790-1960). All estimates are based on specifications that
control for year fixed effects, and state-by-35-year-period fixed effects and linear trends; are population weighted;
and in which standard errors are clustered at the state level. Figures plot estimates and 90% confidence intervals.
All temperature variables reflect the fraction of days in the year with an average daily temperature in a given
range, multiplied by 12 to be interpretable as the effects of one month of days with such a temperature. Panel
(a): See equation (1) for estimating equation. Panel (b): See equation (2) for estimating equation.

The above results included all elites, including artists and writers. For the purposes of

shaping institutions, however, it is plausibly more important to consider only political elites

(those who influenced government or policy). These results are shown in Figure 8. Here, we

14Our main specification focuses on the inverse hyperbolic sine of the number of elites so that coefficients
can be interpreted as a percent change. In Appendix Table B2 we present an alternative normalization in which
coefficients can be interpreted as the change in the share of the year’s elites which come from the cold-affected
state.

15As an alternative measure of how influential elites are, we consider their page rank (Nekoei and Sinn,
2021a). These results are in Appendix Table B4 and show a very similar pattern.
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find somewhat larger effects, with a month of cold weather reducing the expected number of

political elites by about 12%.

Figure 8: Extreme weather effects on number of political elites
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Notes: Dependent variable is inverse hyperbolic sine of number of political elites who were born in the given state-
of-birth birth-year cohort (balanced panel, 1790-1960). All estimates are based on specifications that control
for year fixed effects, and state-by-35-year-period fixed effects and linear trends; are population weighted; and
in which standard errors are clustered at the state level. Figures plot estimates and 90% confidence intervals.
All temperature variables reflect the fraction of days in the year with an average daily temperature in a given
range, multiplied by 12 to be interpretable as the effects of one month of days with such a temperature. Panel
(a): See equation (1) for estimating equation. Panel (b): See equation (2) for estimating equation.

Are these effects driven by a decline in elites who were likely most susceptible to extreme

weather events? We present two types of evidence that they are. First, as noted in the

introduction, many elites are drawn from elite families (Nekoei and Sinn, 2021b), who are likely

particularly well-insulated from extreme weather shocks (Basu, 2009). Thus, the effects might

be larger in places and times where “social mobility” is higher, in the sense that elites are more

likely to come from non-elite families. We test this by calculating the share of elites in each

state-by-time-period whose father also is included in the HBR, and dividing states into terciles

of social mobility within each time period (roughly 35 years at a time from 1790–1825 to 1930–

1960). Appendix Figure B3 shows that the effects are larger and more precisely estimated in

the places where elites are less likely to be drawn from elite families, although the difference

across terciles is not statistically significant.

Second, the morality effects of environmental shocks have declined dramatically over time,

perhaps due to technological improvements (Barreca et al., 2016), economic development

(Fukushima, 2021), improved forecasting and adaptation (Shrader et al., 2023), or other forms

of progress. It is plausible this trend stretches back to the 18th century, and so it is interesting
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how the effects of extreme weather have changed over time. In Figure 9, we estimate effects

separately for each time period. The effects of cold weather on elites have fallen dramatically

over time, ultimately vanishing by the 1930–1960 period. This is an encouraging result, sug-

gesting that the consequences of severe weather are not permanent, but can be ameliorated

through growth and progress.

Figure 9: Cold weather effects on elites over time
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Notes: Dependent variable is inverse hyperbolic sine of number of elites who were born in the given state-of-birth
birth-year cohort (balanced panel, 1790-1960). All estimates are based on specifications that control for year
fixed effects, state fixed effects, and state-by-time-period specific linear trends; are population weighted; and
in which standard errors are clustered at the state level. Figures plot estimates and 90% confidence intervals.
All temperature variables reflect the fraction of days in the year with an average daily temperature in a given
range, multiplied by 12 to be interpretable as the effects of one month of days with such a temperature. See
equation (1) for estimating equation.

Finally, we ask what happens when extreme weather leads to a reduction in the number of

history-making elites from one particular state-birth-year cohort. One possibility is that the

hole left in history is filled by people from other state-birth-year cohorts. To investigate this,

we test for two types of spillovers.

First, we test for spillovers within the same birth cohort, but across other nearby states that

are culturally and historically similar. To do this, we use the nine census divisions developed

in 1910 by the Census Bureau to create groups of states that “are roughly similar in terms

of historical development, population characteristics, economy, and the like” (Census, 1994, 6-

1). Census divisions are collections of contiguous states that accord well with intuitions about

states’ culture and history. We add division-by-year fixed effects to our main specification. This

means that a state-year cohort experiencing an extremely cold winter is being compared to the

same birth cohort in other nearby and similar states. If those born in the same year in those
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other states were more likely to become elites because of the dearth of elites caused by the cold

winter, then our estimated effects of extreme cold would become larger.

This approach tests for within-cohort, across-state spillovers. On the other hand, spillovers

might instead come from within-state, across-cohorts. That is, the would-be elites pushed out

of elite status by the extreme cold during their first year of life might be replaced by marginally

older or younger cohorts from the same state. This might be particularly likely for political

elites, where one’s elite status as a governor or member of Congress is conditioned on the state

on lives in. To test for this, we define a function Λ(t) ≡ ⌊t/5⌋ × 5 that maps year to five

year periods. So, for instance, Λ(t) = 1910 for t ∈ {1910, 1911, 1912, 1913, 1914}. This groups

consecutive years into five-year periods. We then include state-by-five-year-period fixed effects

in our main specification. As we argued above, if the decline in elites induced by a harsh winter

leads to increased elite production from earlier and later cohorts, then the inclusion of these

fixed effects should increase the estimated effects of cold weather.

Figure 10 presents the results. The purple squares represents our baseline estimates, on

all elites and political elites, separately by whether the elites’ page has been translated into

other languages. The gray diamonds then present the estimated effects of cold weather after

adding division-by-year fixed effects to test for within-cohort, across-state spillovers. The blue

circles instead add state-by-five-year-period fixed effects to test for within-state, across-cohort

spillovers.

Although none of these estimates are statistically significantly different from one another,

we do find that the inclusion of fixed effects increases the size of the estimated effects of cold

weather, consistent with spillovers. Interestingly, comparing the two types of spillovers, we find

that for all elites, within-cohort across-state spillovers appear to be modestly more important.

However, for political elites, who often directly represent their state, it is the within-state,

across-cohort spillovers that appear to be more important.

Reassuringly, when we run the same regressions using years of education and average earn-

ings as outcomes—where we do not find spillovers plausible because it is unlikely that success

in one state-birth-year cohort would crowd out success for another—we find that the estimated

effects become smaller and less precise, rather than larger and sometimes more precise. We in-

terpret this as evidence that this approach does effectively test for meaningful spillovers driven

by “elite substitution.”

Overall, these results suggest that extreme weather events that affect mortality (as we show

above) as well as infant health and development (as the literature has shown) have significant

effects on education, earnings, and individuals’ emergence as leaders in their societies. These

effects tend to be larger for more positively selected “tail outcomes” than for average outcomes.

Looking at the harsh environmental and development challenges faced by billions around the
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Figure 10: Evidence of substitution in elite production
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Notes: Dependent variable is inverse hyperbolic sine of number of elites who were born in the given state-of-birth
birth-year cohort (balanced panel, 1790-1960). All estimates are based on specifications that control for year
fixed effects, state fixed effects, and state-by-time-period specific linear trends; are population weighted; and
in which standard errors are clustered at the state level. Figures plot estimates and 90% confidence intervals.
All temperature variables reflect the fraction of days in the year with an average daily temperature in a given
range, multiplied by 12 to be interpretable as the effects of one month of days with such a temperature. Relative
to our main specification – see equation (1) for estimating equation – these specifications also include either
division-by-year fixed effects or state-by-five-year-period fixed effects (i.e., fixed effects for s − Λ(t) pair where
Λ(t) ≡ ⌊t/5⌋ × 5.
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world today (and likely to grow with climate change and the resulting increase in extreme

weather shocks), this is a concerning result.

At the same time, our results do not show an immutable pattern of fate. Growth and

progress can reduce the effects of extreme weather, and when there are some states and cohorts

that are less affected, then history has a way of partially offsetting the negative results by

drawing influential people from those states and cohorts instead.

5 Conclusions

This paper uses long-run panel data on weather, health, earnings, education, and elite

members of society to provide novel evidence on the role of extreme weather in shaping eco-

nomic outcomes. We find that cohorts born during years with especially severe winters have

significantly worse adult outcomes in terms of years of education and average earnings, with

particularly large effects at the top of the distributions for both of these outcomes. Extreme

weather also reduces the emergence of history-making elites. This suggests that extreme envi-

ronmental conditions play an especially strong role in blunting outcomes for the most promising

members of society. This provides complementary evidence to widely documented inequities

terms of larger effects of environmental conditions on the less well off members of society as

measured by baseline characteristics.

The results also indicate that conditions have improved over time in the US. Future work

could explore the mechanism underlying this change. Understanding the mechanism could be

particularly valuable if other places around the world are currently less adapted to extreme

weather events—and are therefore still experiencing negative effects on consequential economic

outcomes—or if larger environmental shocks due to climate change outpace society’s adaptive

capacity.
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A Data

Table A1: Definitions of elite education

Census Definitions of elite education Next highest education level
years (and percent of respondents) (and percent of respondents)

1940-1950 5+ years of college (1.2%) 4 years of college (2.6%)

1960-1970 6+ years of college (3%) 5+ years of college (2%)

1980
7 years of college (1.6%)

6 years of college (3%)
8+ years of college (2.4%)

1990-2010
Professional degree (2.1%)

Master’s degree (6.8%)
Doctoral degree (1%)

The table shows the definition of elite education over the sample period.
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B Additional results

Figure B1: Geographic distribution of identifying variation in cold days
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(a) 1900-1960
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0.219 − 0.252

(b) 1790-1960

Notes: Figure displays the standard deviation (across years) of our “cold days” temperature variable after
residualizing it of the fixed effects we include in our main specification (year fixed effects and state-by-35-year-
period specific levels and linear trends). “Cold days” are defined as the fraction of days in the year with an
average temperature below 5°C, multiplied by 12 so as to be interpreted as the number of months in the range.
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Figure B2: Mortality “effects” without state-by-period specific trends
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Notes: Dependent variable is log mortality in the given state during the year (almost balanced panel, 1900-1960).
Unlike the figure in the main text (Figure 2), specification for this figure does not control for state-by-35-year-
period specific levels or trends; it only controls for state and year fixed effects. Estimates are still based on
specifications that are population weighted and in which standard errors are clustered at the state level. Figure
plot estimates and 90% confidence intervals. All temperature variables reflect the fraction of days in the year
with an average daily temperature in a given range, multiplied by 12 to be interpretable as the effects of one
month of days with such a temperature.

Table B1: Extreme weather effects on earnings by birth quarter

(1) (2) (3) (4)

DV: Log of By quarter of birth
mean earnings Jan.-Mar. Apr.-Jun. Jul.-Sep. Oct.-Dec.

ColdDays -0.0027 -0.0049 0.0012 -0.0185
(0.0109) (0.0107) (0.0106) (0.0120)

R2 0.987 0.989 0.989 0.988
N 931 931 931 931

* p < .10, ** p < .05, *** p < .01. The dependent variable is
the log of the average earnings at age 40 for individuals born in
the given state-of-birth birth-year cohort during the given quarter
(1920-1940). All estimates are based on specifications that control for
year fixed effects, state fixed effects, and state-specific linear trends;
are population weighted. Standard errors are clustered at the state
level. All temperature variables reflect the fraction of days in the
year with an average daily temperature in a given range, multiplied
by 12 to be interpretable as the effects of one month of days with
such a temperature. See equation (1) for estimating equation.
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Table B2: Alternative normalization of number of elites

(1) (2) (3) (4)

DV
All elites Political elites

Any lang. 2+ lang. Any lang. 2+ lang.

Panel A: Inverse hyperbolic sine of elites (main spec.)
ColdDays -0.802** -0.625* -1.402** -1.459*

(0.304) (0.325) (0.540) (0.745)
R2 0.960 0.941 0.848 0.763
N 8267 8267 8267 8267

Panel B: State’s share of year’s elites
ColdDays -0.049** -0.048** -0.056* -0.060

(0.021) (0.022) (0.032) (0.036)
R2 0.972 0.958 0.914 0.859
N 8267 8267 8267 8267

* p < .10, ** p < .05, *** p < .01. The dependent variable is
the number of elites from the state-birth-year cohort. In Panel
A, we take the inverse hyperbolic sine (as in our main specifi-
cation). In Panel B, we divide the number of elites from the
state-birth-year cohort by the number of elites from the birth-
year cohort across all states. Thus, the dependent variable is
the state’s share of all elites from this birth-year cohort. All
estimates are based on specifications that control for year fixed
effects, state fixed effects, and state-specific linear trends; are
population weighted; and in which standard errors are clus-
tered at the state level. All temperature variables reflect the
fraction of days in the year with an average daily temperature
in a given range, multiplied by 12 to be interpretable as the
effects of one month of days with such a temperature. See
equation (1) for estimating equation.
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Table B3: Alternative state-by-period specific trends

(1) (2) (3) (4)

DV
All elites Political elites

Any lang. 2+ lang. Any lang. 2+ lang.

Panel A: State-by-35-year-period linear trends (main)
ColdDays -0.802** -0.625* -1.402** -1.459*

(0.304) (0.325) (0.540) (0.745)
R2 0.960 0.941 0.848 0.763
N 8267 8267 8267 8267

Panel B: State-by-20-year-period linear trends
ColdDays -0.795*** -0.701** -1.373** -1.536**

(0.294) (0.338) (0.521) (0.727)
R2 0.963 0.946 0.857 0.775
N 8265 8265 8265 8265

Panel C: State-by-45-year-period linear trends
ColdDays -0.687** -0.553* -1.374*** -1.605**

(0.286) (0.312) (0.493) (0.726)
R2 0.958 0.939 0.844 0.756
N 8267 8267 8267 8267

Panel D: State-by-35-year-period quadratic trends
ColdDays -0.901*** -0.677* -1.528*** -1.577**

(0.311) (0.352) (0.546) (0.744)
R2 0.962 0.944 0.853 0.771
N 8267 8267 8267 8267

Panel E: Division-by-decade fixed effects
ColdDays -1.812** -1.748** -1.912** -2.222**

(0.770) (0.802) (0.736) (0.856)
R2 0.925 0.903 0.803 0.719
N 8267 8267 8267 8267

* p < .10, ** p < .05, *** p < .01. The dependent variable is the inverse hyperbolic sine
of the number of elites from the state-birth-year cohort. All estimates control for state-
by-time-period specific trends, as well as state and year fixed effects. In Panel A, time
periods are approximately 35 years and trends are linear (as in our main specification).
In Panel B, time periods are approximately 20 years and trends are linear. In Panel C,
time periods are approximately 45 years and trends are linear. In Panel D, time periods
are approximately 35 years and trends are quadratic. In Panel E, instead of state-by-
time-period trends, we include census-division-by-decade fixed effects. All regressions
are population weighted and cluster standard errors at the state level. All temperature
variables reflect the fraction of days in the year with an average daily temperature in
a given range, multiplied by 12 to be interpretable as the effects of one month of days
with such a temperature. See equation (1) for estimating equation.
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Figure B3: Heterogeneous effects by social mobility
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Notes: Dependent variable is inverse hyperbolic sine of number of elites who were born in the given state-of-
birth birth-year cohort (balanced panel, 1790-1960). All estimates are based on specifications that control for
year fixed effects, state fixed effects, and state-by-time-period specific linear trends; are population weighted;
and in which standard errors are clustered at the state level. Figures plot estimates and 90% confidence
intervals. All temperature variables reflect the fraction of days in the year with an average daily temperature in
a given range, multiplied by 12 to be interpretable as the effects of one month of days with such a temperature.
Estimates are based on heterogeneous effects by within-time-period terciles of social mobility. To measure social
mobility at the time-period-by-state level, we calculate the share of elites (political elites, resp.) who’s father
also is in the HBR page. We then divide states into terciles within each time-period, and estimate Ys,t =
αs+ δt+µs,T (t)+γs,T (t)t+θL

(
ColdDayss,t×LowSocMobs,T (t)

)
+θI

(
ColdDayss,t× IntermedSocMobs,T (t)

)
+

θH
(
ColdDayss,t ×HighSocMobs,T (t)

)
+

∑
k βkTMEANk

s,t + εs,t. The figure plots the θ̂L and θ̂H coefficients
corresponding to the effects of cold weather in the lowest and highest, respectively, terciles.
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Table B4: Heterogeneity by pagerank

(1) (2) (3) (4) (5) (6)

All elites Political elites

DV All
Below Above

All
Below Above

median median median median

ColdDays -0.067** -0.076** -0.058 -0.117** -0.146** -0.102
(0.025) (0.036) (0.035) (0.045) (0.059) (0.072)

R2 0.960 0.930 0.931 0.848 0.785 0.743
N 8267 8267 8267 8267 8267 8267

* p < .10, ** p < .05, *** p < .01. The dependent variable is the inverse
hyperbolic sine of the number of elites from the state-birth-year cohort, sepa-
rately for those who have above or below median pagerank. Pagerank (Brin and
Page, 1998) is a network measure that evaluates the importance of an individual
within the Wikipedia hyperlink network based on the quantity and quality of
links to an article. We measure the pagerank by combining hyperlinks across
all languages. All estimates are based on specifications that control for year
fixed effects, state fixed effects, and state-specific linear trends; are population
weighted; and in which standard errors are clustered at the state level. All tem-
perature variables reflect the fraction of days in the year with an average daily
temperature in a given range, multiplied by 12 to be interpretable as the effects
of one month of days with such a temperature. See equation (1) for estimating
equation.
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