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Abstract

Unchecked climate change will cause precipitation volatility to increase around the

world, leading to economic damages in the face of adjustment costs. We estimate

these damages for construction—an economically important, climate exposed industry.

Empirically, employment falls in response to forecasted rainfall and more so as the

forecast horizon increases. This pattern allows for identification of labor adjustment

costs via a multi-sector model of local labor markets calibrated to our estimates. When

rainfall is anticipatable 1 month ahead, construction firms pay 10% of monthly profit

to adjust. They pay less than 1% for rainfall anticipatable 6 months ahead. Without

further adaptation or forecast improvements, increased rainfall volatility due to climate

change is projected to lead to more costly adjustment. (JEL:D83,J21,Q51)
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1 Introduction

Beyond simply warming the earth, climate change will have profound effects on the

complete distribution of weather. While much of the literature has examined the economic

consequences of changes in average weather (including rising temperatures and sea levels),

in this paper we consider economic effects of changes in the volatility of weather. We focus

on productivity interruptions caused by rainfall, show that firms incur serious costs from the

types of rainfall shocks that climate change makes more common, and study the extent to

which scientific advances in forecasting and attentive planning by managers can offset these

costs.

We focus on the construction sector, a large and economically important industry that

is highly exposed to the climate. Construction constitutes a five times larger share of GDP

in the U.S. than the more widely studied forestry, fishing, and agriculture sector (BEA,

2019).1 Beyond simply its size, construction is central to the economy, supplying essential

inputs to virtually all other industries and using materials produced by many other sectors.

At the same time, weather directly impacts construction. Data from the American Time

Use Survey shows that only agricultural workers spend more time outside than construction

workers. Combined with the importance of construction to the overall economy, month-to-

month disruptions due to weather can be an important source of economic costs.

Despite its economic importance and potential climate vulnerability, construction has not

been the focus of research in the climate economics literature.2 This literature has focused

either on the costs associated with equilibrium consequences of gradual changes in average

temperature and precipitation or on the acute effects of realized weather shocks, both of

which have first order effects on sectors like agriculture and energy.3 In contrast, we focus

on the costs regularly paid due to ex ante adjustment to weather events, and we use evidence

from the construction sector to infer the increase in these costs that will occur after climate

1This multiple is not an outlier. According to UNECE (2019), the construction industry is 9 times
larger than agriculture in the U.K. and 6 times larger in Germany. Even in more heavily agriculturally
reliant countries like Spain and Italy, construction is more than twice the size of agriculture in terms of its
contribution to GDP.

2For the few studies that do look at construction, the emphasis is often on potential job growth as
other sectors comply with climate policy or adapt to a changing climate. See Fankhaeser et al. (2008), for
example. Some research studies sectoral effects of weather and climate change. Graff Zivin and Neidell (2014)
estimate the effects of temperature on intensive-margin labor supply in construction and other climate-
exposed industries. Jain et al. (2020) investigate the effects of temperature on economic production for
multiple sectors in India including construction. More studies have focused on agriculture, a sector we
abstract from in this paper. As discussed below, rainfall has offsetting positive and negative effects on
agricultural, and the agricultural labor market in the U.S. is largely segmented from from other labor
markets (Taylor, 2010).

3Zhang et al. (2017) points out that a wide range of climate variables—not just temperature and
precipitation—will likely have important effects on agriculture.
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change has shifted weather patterns.

Climate change will increase rainfall volatility as warmer air masses hold and then sud-

denly release larger volumes of water (Pendergrass et al., 2017). This effect is often sum-

marized by the saying that as a result of climate change, “wet regions get wetter and dry

regions drier” (Held and Soden, 2006). Climate projections also show that within locations,

the time series volatility will increase (O’Neill et al., 2016).4 Consistent with a large body

of evidence on the costs of volatility in conditions like product demand or supply chains,

we show that productivity volatility caused by rainfall shocks is an important—but rarely

quantified—cost of climate change.5

We empirically identify adjustment costs in the construction industry by estimating

employment responses to more or less forecastable rainfall. Our primary focus is on how

medium-range forecasts of weather conditions in the coming six months affect the dynam-

ics of employment responses to rainfall. We combine data on construction employment in

commuting zones (CZs) across the United States over the last three decades with: i) infor-

mation on monthly rainfall and ii) climate variation that can be used to forecast rainfall

month-to-month. These data allow us to estimate employment responses to exogenous news

shocks about future rainfall. Our identification strategy exploits rich variation in weather

patterns across the U.S. to identify separate employment responses to forecasts available at

different horizons (ranging from one month to six months in advance). To help validate our

empirical approach, we provide extensive discussion of the ways in which rainfall is a serious

and well-recognized challenge in construction sector, construction firms actively monitor the

types of medium-range forecasts we rely on for identification, and commonly used contracts

shift weather risk from site owners onto construction firms.

We find that the elasticity of construction employment with respect to rainfall is five times

larger when that rainfall could be predicted 6 months in advance compared to when it could

only be predicted 1 month in advance. In other words, an identical rainfall “shock” generates

a significantly larger employment response when it is predictable further in advance. This

empirical reduced form finding cannot be reconciled with simple, frictionless, static models of

labor input, which is important partly because these models remain the norm for analyzing

economic effects of climate change.

To interpret the reduced form effects, we model a multi-sector, open-economy with both

4Over the last 30 years, month-to-month variance in rainfall has increased by about 5% in the U.S. CMIP6
projections indicate that variance will go up another 10 to 15% by the end of the century under unmitigated
warming.

5The effects of temperature variability have been studied in papers such as Lemoine and Kapnick (2016).
Studies of rainfall variability are more rare even though increases in rainfall variability are consistent projec-
tion from climate models. Fishman (2016) evaluates the effects of rainfall variability on agriculture, finding
that climate-change-driven increases in rainfall volatility (leading to a higher probability of dry days) will
offset the benefit of increasing total rainfall.
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demand-side and supply-side adjustment costs. We calibrate the model to match the esti-

mated employment dynamics. Unlike the benchmark models widely used for climate eco-

nomics, our model creates a channel by which volatile productivity can harm firms (because

they wish to adjust their input demands but must face costs of doing so). We use this model

to understand how productivity and output are affected by rainfall shocks, how the burden

of these shocks is shared between workers and firms, and the extent to which firms are able

to adjust employment to avoid the costs of the shock. Throughout the counterfactuals, we

pay special attention to how the results would change if firm-side adjustment costs fall (for

instance, because firms write more flexible employment contracts that allow greater respon-

siveness to shocks) or the forecast horizon for the rainfall fluctuation increases (for instance,

because managers increasingly use better scientific models).

In the benchmark calibration, we find that rainfall shocks reduce firm profits and harm

workers’ productivity. Faced with adjustment costs, firms and workers hit by surprise rainfall

events suffer substantially. With longer horizon forecasts, the effect is different. A firm that

is able to forecast the shock six months in advance can offset 86% of the profit loss that

occurs in the counterfactual world where it was only able to forecast the shock one month in

advance. But enhanced flexibility for the firm creates a real policy trade-off. Firms largely

offset the effects of the productivity shock by passing the costs onto workers, leaving workers

to bear a larger part of the burden of the shock.

The firms do need to pay a cost to engage in this adjustment. There is a direct cost

stemming from changes to the labor force and the adjustment costs we estimate. These

costs are always weakly positive, and they occur whether the rainfall shocks help or hurt

productivity. The level of adjustment cost also determines how willing the firm is to engage

in ex ante labor adjustment in order to reduce damages when the shock arrives. In our

baseline calibration, we show that adjustment costs are high enough to lead to non-trivial

adaptation costs for firms, but low enough to make firms want to engage in substantial

adjustment—particularly if they have enough advance notice before the shock arrives.

If rainfall gets more volatile in the future—as climate projections currently indicate it

will—then the adjustment costs we estimate will translate into extra damage for the economy.

This is a source of climate damage that is currently omitted from economic assessments of

climate change. Conditional on a rainfall shock occurring, higher volatility means that a

rainfall shock will have a higher probability of being larger in magnitude. In the absence of

adaptation, larger shocks will cause bigger losses in productivity and profit for firms. Our

estimates, however, show that firms can offset some of those losses by planning further ahead.

Given the projected 10 to 15% increase in rainfall volatility by the end of the century, a firm

would require up to a half-month further ahead forecast to be left no worse off.

These results thus can serve as a warning about future climate damages while also point-
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ing to two avenues firms can explore to reduce their risks. Construction managers know

that their bottom line is affected by weather and have substantial experience planning for

adverse weather (Trauner et al., 2018). If managers can further improve the quality and

accuracy of their plans, then they can reduce the losses they will take if bad weather arrives.

In-house project managers, weather risk consulting firms, and professional forecasters might

all be able to aid in this effort. Improvements in forecasting at the horizons we study here,

however, are challenging (Toth and Buizza, 2019). And as the results on workers show,

forecast improvements come with the potential for increasing inequity in the incidence of

climate damages. Second, managers can potentially invest in ways to reduce the adjust-

ment costs they face. The construction industry already routinely uses seasonal contracts

to manage the workforce during the winter (Krane and Wascher, 1999, Organization, 2016).

A contract for shorter-run weather shocks that resembles these seasonal contracts could, for

instance, reduce the costs the firm needs to pay to build back up the labor force after the

shock dissipates.

Our paper provides a methodological contribution by introducing a unique empirical

strategy to identify labor adjustment costs. It also draws the link between those costs and

climate change. There is a nascent literature focusing on the effects of climate change on labor

markets, primarily in agriculture (for instance, see Rosenzweig and Udry (2014), Colmer

(2020)). The current paper shows that climate change is important for extensive margin labor

adjustment in construction. Effects in construction might be particularly relevant because

construction services—like seawalls; retrofits of buildings to improve heating, ventilation,

and air conditioning systems; accommodation of changing patterns of urbanization—will be

important components of adaptation to climate change (Fried, 2019).

At the same time, our results show that adjustment costs in the construction sector mean

that an important part of the effect of climate change on the industry happen before weather

realizations occur. Failing to take this forward-looking component into account can bias

estimates of the effect of climate change (Shrader, 2020, Lemoine, 2021). The methodology

from this paper is directly portable to other locations around the world where monthly or

seasonal forecasts are available (organizations like the National Oceanic and Atmospheric

Administration (NOAA) and the European Centre for Medium-Range Weather Forecasts

(ECMWF) now routinely provide such forecasts globally (Scher and Messori, 2019)).

Finally, our paper investigates a novel dimension of the damage from climate change. In

this paper, when we say “adjustment costs,” we are referring to costs routinely paid, day to

day, that arise because of a widening of the weather distribution. It is important to note

that these are not adjustment costs paid when transitioning between equilibria. Instead,

they are costs that are already being paid in steady state, every time rain arrives. Under

projected climate change, we will simply be paying them more often. These costs are missing
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from existing analyses of the damages of climate change. Related to this point, as an added

empirical contribution of our paper, the short-run nature of these costs mean that existing

data speaks more directly to them than to costs arising from differences in long-run equilibria.

2 Related literature and background

2.1 Previous research

Volatility is central to business decisions. Volatility in either productivity or product de-

mand has been shown to explain differences in investment behavior (Kellogg, 2014), market

size and competition (Collard-Wexler, 2013), employment contracts and outsourcing deci-

sions (Abraham and Taylor, 1996), and the “misallocation” of factors of production (Asker,

Collard-Wexler, and De Loecker, 2014).6

Beyond its direct implications for firms’ operational decisions, the importance of volatil-

ity is informative about the fundamental structure of the labor market. Models with a

frictionless, perfectly competitive labor market (still the foundations of many policy analy-

ses, including climate models) leave no room for volatility. If firms can freely adjust their

labor force, as these models assume, then employment and profits depend only on the actual

conditions firms are facing at any given moment. Changes in those conditions, regardless

of their size, frequency, or predictability, are not important because firms can costlessly and

immediately re-optimize.

It has long been understood that this is not realistic. Firms face dozens of complex costs

in changing their labor pool.7 The private sector has understood this longer than academic

economists have. In his seminal 1962 paper, Walter Oi (1962) argues that non-negligible

hiring and training costs mean that part of a firm’s labor is a fixed cost. Oi rests this

argument largely on an internal study done a decade earlier by the International Harvester

Company (IHC) called “The Costs of Labor Turnover” (1951). There, IHC economists

estimate that the average cost of training a new worker was $238, or about 11% of median

annual earnings at the time ($2,200). These costs have remained remarkably persistent.

Representative establishment surveys conducted today estimate that the costs of replacing

6The bulk of empirical studies of productivity, including those focused on volatility, treat it as a residual
(i.e., excess production after accounting for inputs). The estimation challenges in this approach are substan-
tial and well-understood (Ackerberg, Caves, and Frazer, 2015). A contribution of our paper, made possible
by our context, is that we study productivity shocks using a direct measure of productivity: rainfall, which
has first order effects on the ability to perform construction, as discussed below.

7Our focus is on the effects of increasing the volatility of productivity fluctuations, since this is directly
linked to climate change. A separate but related issue is the effects of uncertainty about future productivity
fluctuations. As Bloom (2009) points out, uncertainty about future productivity also has no effect in a
frictionless model, but in a model with realistically calibrated adjustment costs, can have first order effects
on aggregate employment and output.
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an employee are 9% of average annual earnings (Dube, Freeman, and Reich, 2010).

The costs facing a firm wishing to adjust its labor pool extend beyond recruiting and

training workers. A large literature on wrongful discharge regulations shows that these

regulations impose firing costs. By making it more difficult for firms to dismiss workers

when they need to, firing costs have been shown to reduce firms’ hiring, turnover, ability to

respond to shocks, and ultimately their financial value (see Serfling (2016) for a review).8

Independent of these regulations, all U.S. firms’ face direct financial costs of layoffs arising

from the financing rules of the Unemployment Insurance system (Ratner, 2013).9

More generally, a range of diverse evidence—including the costs firms incur when they

suddenly and unexpectedly lose an employee (Ginja, Karimi, and Xiao, 2020, Isen, 2013,

Jäger and Heining, 2019), the value to firms of hiring through employee referral networks

(Burks et al., 2015), and employers’ learning about employee skills over time (Kahn and

Lange, 2014)—suggests that firms cannot easily shrink or grow their workforce without

costs: a firm’s current workers and the potential alternatives “out there” are imperfect

substitutes.10 At a minimum, given incomplete markets and imperfect insurance for risk, a

firm that is likely to suddenly cut its workforce must still compensate its workers (through

higher wages) for accepting this risk, an idea which dates back to Adam Smith (1776).11

Against this backdrop, our core contributions are, first, to estimate the magnitude of

adjustment costs in the construction sector using a novel strategy that exploits variation in

whether and when rainfall-driven productivity fluctuations could have been predicted, and

second, to quantify the consequences of increasing rainfall volatility driven by climate change.

An advantage of our method for estimating adjustment costs is that it comprehensively

8A paper closely related to ours is Adhvaryu, Chari, and Sharma (2013), who study how agricultural
employment responds to rainfall in India. They focus on differential responses depending on wrongful
discharge laws and their implications for labor regulation. We focus on differential responses depending on
whether and when that rainfall could have been predicted and the implications for rising volatility driven
by climate change.

9While much of the literature emphasizes regulations as the source of frictions and adjustment costs, 19th

century manufacturing wages show evidence of imperfect competition in the labor market and firm-specific
rents, even before labor regulations existed in the U.S. (Naidu and Yuchtman, 2018).

10One challenge facing firms is screening applicants for quality. There is growing evidence that non-
cognitive skills and traits are becoming increasingly important in the labor market (Edin et al., 2017), and
this matters because it is likely even more difficult to screen for these skills than for cognitive or training-
based skills. Many of these non-cognitive traits are directly relevant for construction firms. For instance,
construction firms need workers who are reliable and will arrive on time, who can get along with others in
an inherently interactive job, and who respect and value safety practices, all of which are extremely difficult
to assess during the hiring process. This increases the incentive for construction firms to keep their workers
and the challenges of changing staffing levels in response to demand fluctuations.

11“In the greater part of manufactures, a journeyman may be pretty sure of employment almost every day
of the year that he is able to work. A mason or bricklayer, on the contrary, can work neither in hard frost nor
in foul weather, and his employment at all other times depends upon the occasional calls of his customers.
He is liable, in consequence, to be frequently without any [employment]... The high wages of those workmen,
therefore, are not so much the recompence of their skill, as the compensation for the inconstancy of their
employment.”
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includes all types and sources of adjustment costs. Analyses of specific laws (like wrongful

discharge laws (Serfling, 2016) or unemployment insurance financing (Ratner, 2013)) only

capture one specific source of adjustment costs, and survey-based approaches (like Oi (1962)

and Dube et al. (2010)) can easily miss important types of costs. An advantage of our

application to climate change is that our estimation strategy is explicitly and directly linked

to our counterfactual of interest (month-to-month volatility of rainfall), and outlines clear

implications for firms and policy to respond (improving the ability to forecast future rainfall).

2.2 Industry attention to rainfall and long-range forecasts

The construction industry is a natural and important setting to estimate the effect of

climate volatility—particularly from rain—on employment and productivity. Construction

firms face strong incentives to pay attention to and plan for rain. Rain delays the completion

of construction projects, and the costs of those delays typically fall on the construction

contractor.

Rainfall makes outdoor work more hazardous by reducing visibility and increasing the

risk of slipping or falling. Rain generates mud that can impede access to a work site and

prevent the use of heavy machinery. It also prevents certain types of welding, electrical work,

and cement pouring. Rain can even delay indoor work. For example, heavy rainfall can cause

the water table to rise, delaying basement construction. Finally, construction firms in the

United States are required by the Environmental Protection Agency to control rain-driven

pollution effluent from work sites, requiring the diversion of labor and capital to that task

(Environmental Protection Agency, 2009). One recent estimate by Ballesteros-Pérez et al.

(2018) shows that weather variation delays the average construction project by 22%.

Under common contracts, construction firms bear much of the risk for weather-related

delays (Trauner et al., 2018). The American Institute of Architects Form A201—a standard

contract between a construction contractor and a site owner that is widely used in the

U.S.—stipulates that the contractor is responsible for any rain delay that could have been

“reasonably anticipated.”12 Even if a delay is caused by potentially unreasonable weather,

the contractor must still bring a claim and show, as a matter of fact,13 that the weather

was more extreme than could have been expected. This finding of fact requires that the

contractor record and pay attention to weather conditions during the construction project.14

12In the contract, construction firms can attempt to lengthen the contract without incurring cost under
A201 §15.1.6.2, which reads: “If adverse weather conditions are the basis for a Claim for additional time, such
Claim shall be documented by data substantiating that weather conditions were abnormal for the period of
time, could not have been reasonably anticipated, and had an adverse effect on the scheduled construction.”

13A matter of fact is a legal term for an actual occurrence, in contrast to a matter of law which is the
purview of the judge.

14If not otherwise stated by contract, the presumption in the courts is that weather risk falls squarely
on the contractor. Associated Engineers and Contractors v. State, 58 Haw. 322: “Moreover, the risk of
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Even if a construction contractor successfully makes a claim for an extension to a de-

layed project, the contractor might simply avoid paying for the delay without gaining any

additional recompense. Moreover, beyond the within-project costs, delays in one project can

have knock-on effects of other projects that make them even more costly. Typical construc-

tion projects in the U.S. take at least 6 months from start to completion, making monthly

rainfall forecasts that extend out to this horizon like the ones we study particularly relevant

for the decisions by construction firms U.S. Census (2021).

Given the high cost of weather delays and the contractual need to form “reasonable”

expectations about those delays, construction firms devote substantial resources to plan-

ning for weather. Bids at the beginning of jobs routinely include a monthly breakdown of

expected weather delay days, and the construction project manager is expected to record ac-

tual delays relative to this schedule (Trauner et al., 2018).15 Specialized, proprietary project

management software helps review weather data before and during a project.16

The key implication of all this is that the construction industry pays particular attention

to long-range weather forecasts and the El Niño/Southern Oscillation (ENSO) variation that

we use in our analysis is the most important element of those. ENSO is a coupled oceanic-

atmospheric phenomenon that occurs in the equatorial Pacific Ocean and is a primary driver

of medium term global climate variation (Ropelewski and Halpert, 1987). El Niño events lead

to higher rainfall in most (but not all) of the U.S.17 ENSO events change weather sometimes

for months thereafter, allowing forecasters to make skillful predictions of weather patterns

over monthly, seasonal, and annual horizons. The ECMWF, the premier numerical weather

forecasting group in the world, states that “Long term predictions [extending out to seven

months] rely on aspects of Earth system variability which have long time scales (months to

years) and are, to a certain extent, predictable. The most important of these is the ENSO

(El Niño Southern Oscillation) cycle.” (emphasis ours, ECMWF (2019)). NOAA also issues

seasonal weather forecasts for the U.S., again relying heavily on predictability coming from

ENSO.18 The long-range (monthly and seasonal) forecasts from NOAA’s Climate Prediction

Center have been available online since 1995. The project planning tools used by construction

firms and discussed in the previous paragraph are proprietary and do not disclose what goes

abnormal weather is commonly held to be assumed by a construction contractor, except where provision
otherwise is made in the contract or the parties are not equal in their knowledge of relevant weather data.
Hardeman-Monier-Hutcherson v. United States, 458 F.2d 1364 (Ct. Cl. 1972).”

15These project managers make up 9% of all employment in the construction industry and hold college
degrees at similar rates to the full U.S. workforce, with engineering degrees being among the most common.

16Some contracts, such as the State of Tennessee RPA January 2002 Std 01252, specifically requires that
the contractor consult NOAA data to determine anticipatable weather delays.

17ENSO also causes changes in U.S. temperatures, but this effect is generally weaker than the precipitation
effect (Ropelewski and Halpert, 1987, Halpert and Ropelewski, 1992).

18For the latest seasonal forecasts from NOAA, extending out to 12.5 months, see here: https://www.

cpc.ncep.noaa.gov/products/predictions/90day/
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into the forecasts. But given the importance of ENSO to rainfall prediction in the U.S.,

ENSO variation likely plays an important role in guiding planning decisions by construction

firms.

A strong El Niño event in 1982 and 1983 caused substantial rainfall across the U.S.

and, over the next decade, led to increased public awareness of the link between ENSO and

weather conditions.19 The construction industry is well aware of the link between ENSO and

rainfall. Articles in construction trade journals routinely report on the link between ENSO

and U.S. rainfall, including emphasizing the need to prepare for changes in rainfall due to

the climactic variation (Halsey, 2016). As Ropelewski and Halpert (1987) show and our

results corroborate, the relationship between ENSO and rainfall is spatially heterogeneous,

with some areas of the country experiencing heavier rainfall during ENSO events while other

areas experience drier conditions. In our analysis, we will test whether ENSO-predicted

rainfall affects employment, which implicitly assumes that the market is responding to the

appropriate predictions for their area of the country. This assumption is plausible given

that the spatial heterogeneity of ENSO effects has been known since at least the 1980s

and the effects are consistent across broad areas of the country (the drier conditions are

predominantly in the Northern Rockies and upper Midwest while wetter conditions are

across the South and West Coast). In summary, then, the ENSO fluctuations that we

use to generate variation in predictable rainfall are both the major driver of long-run rainfall

forecasts and are a major focus of construction sector project managers.

3 Data

To estimate the effect of more or less forecastable rainfall on construction employment,

we combine three primary data sources on employment, weather, and climate variability.

3.1 Construction employment data

We measure employment using the Quarterly Census of Employment and Wages (QCEW),

which provides a high frequency snapshot of employment across U.S. counties based on state

Unemployment Insurance records. Although we are primarily interested in firms’ responses,

we focus on aggregate data at the labor market level because existing firm-level datasets

are not suitable for our purposes. Nearly all firm-level datasets are annual, while our ap-

proach requires high-frequency employment adjustments. Fortunately, the QCEW provides

employment at the monthly frequency.

19See, for instance, the Washington Post’s history of ENSO reporting by various news agencies (Williams,
2015).
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While the Longitudinal Employer-Household Dynamics (LEHD) includes quarterly em-

ployment information (and would have other advantages), only since 2003 has it included

all states. Prior to that, it includes only some states. This is a problem for us because

part of our identifying variation comes from geographic variation in responsiveness to ENSO

(thus, we need data from all states to provide enough cross-sectional variation) and part of

our identifying variation comes from over-time variation in the ENSO index (thus, we need

more over-time variation than the post-2003 period could provide). Figure A2 shows ENSO

anomalies since 1990. Restricting to the post-2003 period would cost us the two highest

ENSO spikes and the two lowest ENSO troughs.

3.2 Weather and climate data

The second main dataset we use contains rainfall and temperature measurements from the

PRISM (Parameter-elevation Regressions on Independent Slopes) Climate Group (PRISM

Climate Group, 2004). PRISM combines weather station data with elevation data to produce

monthly, gridded measures of weather. The PRISM data provide more consistent geographic

coverage than raw weather station data.

We aggregate the gridded measures to the CZ level by calculating population-weighted

averages. The population weights come from the 2010 U.S. Census population grid avail-

able from the Center for International Earth Science Information Network (CIESIN, 2017).

Figures showing the spatial variation in weather can be found in the appendix (Section

A). The final weather dataset is a monthly panel from January 1990 to December 2016 of

population-weighted average values for each CZ in the continental U.S. for total precipitation

and average temperature.

Third, we use monthly data on ENSO from the NOAA as a source of long-range (monthly)

predictability in rainfall. ENSO is commonly measured using sea surface temperature anoma-

lies in an area of the equatorial Pacific Ocean known as the Niño 3.4 region that extends

from 5◦S to 5◦N latitude and 170◦W to 120◦W longitude. Warm anomalies in this region

are classified as El Niño events and cold anomalies are classified as La Niña events. We use

the Niño 3.4 index as our measure of ENSO in the paper. The history of the Niño 3.4 index

over our sample period is shown in Figure A2 (it is worth noting that ENSO is acyclical with

respect to U.S. recessions).

As discussed in Section 2.2, ENSO is a crucial component of monthly or seasonal forecasts

released by NOAA, ECMWF, and other forecasting groups. Technological advances concen-

trated during the 1980’s led NOAA to begin releasing routine forecasts of monthly weather

conditions starting in the middle of 1989 (Shrader, 2020). The timing of release of these

forecasts and the growing public attention to ENSO-driven weather in the U.S. motivates

our focus on the period after 1989.
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3.3 Estimation sample and summary statistics

Combining all of the above datasets, we have an estimation sample consisting of monthly,

CZ-level observations of employment in the construction industry, rainfall, temperature, and

the Niño 3.4 index. The dataset runs from January 1990 through December 2016. After

excluding CZs with suppressed construction employment, the final sample includes 633 out

of the 722 CZs in the continental U.S.

Table 1: Summary Statistics

(a) Estimation Variables

Variable Mean Std. Dev. Obs.

Construction employment 8604.4 22504.6 205,092
Monthly rain (mm) 78.4 61.9 205,092
Monthly avg. temperature (◦C) 12.7 9.9 205,092
Niño 3.4 index (◦C) 0.045 0.89 205,092

(b) Disclosed vs. Suppressed CZs

Disclosed Suppressed Pct. disclosed

Number of commuting zones 633 90 88%
Total private employment (millions) 185.8 15.0 93%
Year 2000 Population (millions) 276.3 2.7 99%

Notes: The table shows summary statistics for the estimation sample (panel a)
and information on the disclosed CZs that are included in the estimation sample
versus the non-disclosed CZs that are excluded (panel b). The estimation sample
consists of a balanced panel of 633 CZs observed for 324 months, resulting in
205,092 total observations.

Table 1 shows summary statistics for the main variables in our analysis. Employment is

our primary outcome of interest. Rainfall, as forecasted by ENSO, is our primary right-hand

side variable. Temperature is a control in the primary analysis. With 633 disclosed CZs

observed monthly for 27 years, the final sample consists of 205,092 total observations.

Statistics on excluded CZs are also reported in panel (b) of the table. The first row

shows that the CZs in our sample account for 93% of all reported private sector employment

in the QCEW (which is subject to minimal suppression). The disclosed CZs account 99%

of total population. These two figures show that the suppressed CZs are those that have

minimal population and relatively small levels of employment. The final row shows that the

disclosed sample is about 88% of all continental U.S. CZs. Figure A1 shows a map of the

non-disclosed CZs. One can see that they are generally sparsely populated locations in the

West.
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4 Results

4.1 Predicting rainfall

Our core empirical specifications take the form of instrumental variables (IV) regressions,

but the motivation for using IV is different than typical cases, and we use the terminology

just to aid intuition for how the methodology works. The primary role of the first stage in

each specification is to generate predictions of rainfall using variation in ENSO. Using an

IV framework is beneficial because our estimates will correctly reflect inferential uncertainty

from the generated regressors. The first stage for a given forecasting horizon ` is a regression

of the form

ln(Rain)c,t =δ1
t + ρ1

c,m(t) + γcENSOt−` + η1
cENSOt−`−6 (1)

+ θ1
c,1 ln(Rain)c,t−1 + θ1

c,2 ln(Rain)c,t−2 +
12∑
k=3

π1
k ln(Rain)c,t−k

+
12∑
k=1

ζ1
kTempc,t−k + νc,t

where c indexes CZs and t indexes month. The index m(t) is the month-of-year for month t.

We estimate one version of Equation (1) for each horizon ` ∈ {1, . . . , 6}. The regression

tells us how fluctuations in ENSO at time t − ` map into time t rainfall in each CZ. We

refer to ` as the forecasting horizon, and we vary the forecasting horizon to determine the

employment effects of rainfall forecasts with longer and shorter anticipation horizons. The

employment effects are discussed and reported in the next section.

The key right-hand side variable is time t − ` ENSO interacted with CZ-specific coef-

ficients. The coefficients capture regional variation in rainfall driven by ENSO. And these

interaction terms are our excluded instruments in the second stage. Note that an additional,

6-month further lag of ENSO is also interacted with CZ-specific coefficients to account for se-

rial correlation in ENSO. But this further lag is not excluded from the second stage, meaning

that our first stage captures news about ENSO.

We identify the effect of ENSO on rainfall conditional on a number of controls. First,

we include CZ by month-of-year fixed effects, ρc,m(t), which subsume CZ fixed effects. These

fixed effects condition out fixed features of the CZ as well as CZ-specific seasonal patterns

that might otherwise lead to spurious relationships between rainfall and employment. We

also include time fixed effects, which conditions out common time series patterns across the

country. These fixed effects also condition out the time series pattern of ENSO, meaning

that we are identified off of CZ-specific differences in the effect ENSO has on rainfall. The

empirical specification can thus be viewed as a type of difference-in-differences estimator.
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The first stage identifies locations where rainfall is affected by ENSO at different forecast

horizons, `. For a given horizon, the locations where ENSO has a strong effect will be the

“treatment group” while locations where ENSO does not have a strong effect are the “control

group.”

Two of the further controls are of particular importance. CZ-specific coefficients on lags

of rainfall isolate variation driven by ENSO from other types of regional weather fluctuations.

One could use past realizations of rainfall to forecast future rainfall, but this strategy could

be invalid if the past rain realizations themselves have persistent effects on productivity.

We control for rainfall up until time t to prevent contamination of our results by persistent

effects of rainfall that occurs prior to time t. We interact the first and second lag of rainfall

with CZ fixed effects to ensure that we control for autocorrelation in rainfall at a level

of granularity equal to our rainfall predictions.20 Second, as discussed above, CZ-specific

coefficients interacted with the `+ 6 month lag of ENSO isolate news about ENSO that has

arrived in the last 6 months. This gives us relatively precise information about the timing of

the arrival of information. Knowing when information is arriving helps us characterize the

dynamics of adjustment.

Figure 1: CZ-specific coefficients on ENSO

(a) ` = 1 (b) ` = 6

Figure displays CZ-specific coefficients from estimates of Equation (1). They show the response of log rain
to a one standard deviation fluctuation in ENSO, depending on the time between the fluctuation and the
rain (i.e., `).

Figure 1 shows the CZ-specific effect of a one standard deviation increase in ENSO on

log rainfall, conditional on all controls, as estimated by Equation (1). Panel (a) shows

20In practice, the employment effects we find are not highly sensitive to the inclusion or exclusion of the
interaction between rain and CZ. If we simply include the lags of rainfall without any CZ interaction, the
point estimate of the employment effect changes by 10% for the 1-month-ahead forecast and by 4% for the
6-month-ahead forecast, with precision improving in both cases. We maintain the interactions, however,
based on our a prior preference for clearly isolating rainfall news in each CZ.
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the coefficients for a short forecast horizon (` = 1), and panel (b) shows the coefficients

for a long forecast horizon (` = 6). The overall pattern of results is consistent with the

climatology literature on ENSO’s teleconnection with rainfall in the U.S. (Ropelewski and

Halpert, 1987). Like that previous literature, we find that ENSO tends to predict wetter

conditions across the California coast, through the Southwest, and into the South. ENSO

predicts drier conditions across the Norther Rockies, with some additional drying across

the north of the country (Mason and Goddard, 2001). Appendix Figure A7 shows the

empirical persistence of rainfall forecasted by the first stage. The figure shows that the

forecasts predict higher rainfall over a period of 6 to 9 months, with the size of the rainfall

shock falling monotonically over time. Persistence is similar across all forecast horizons we

consider. The moderate empirical persistence of rainfall predicted by the forecast is helpful

for identifying labor adjustment costs. If the rainfall shock was shorter-lived, then firms

and workers would have less incentive to seek alternative work arraignments because the

productivity costs of staying in construction would be lower.

The figure also highlights where our identifying variation comes from. As discussed

above, we include time (year-month) fixed effects that perfectly absorb aggregate ENSO

variation. Identifying variation comes from the different response of rainfall to ENSO at

different horizons in different CZs. Focusing, for instance, on the Midwest in panel (a), we

see that a one standard deviation increase in ENSO will raise rainfall in Western Iowa (along

the Missouri River banks) by roughly 10%, while it will decrease rainfall in Eastern Iowa

(along the Mississippi River banks) by a somewhat smaller amount.21

However, the variation we observe across locations is only part of what we use for iden-

tification. Again comparing panel (a) and panel (b), we also see that there is substantial

variation in when ENSO predicts rainfall. In Western Virginia, for instance, ENSO increases

rain the next month, but has little effect six months later. At the same time, in the neighbor-

ing CZs just north in Pennsylvania, ENSO has no effects initially but significantly reduces

rainfall six months later. This type of idiosyncratic variation helps us separate responses

depending on the timing of news arrival.

Figure 2 shows the differences in ENSO predictions at different forecast horizons to

further clarify this second source of identifying variation. There is one point in the figure

for each CZ in the sample. The points show the relationship between the CZ-specific ENSO

coefficients from the version of Equation (1) estimated with the one-month lag of ENSO and

the difference between the six-month lag coefficients and the one-month lag coefficients. In

other words, the x-axis is the value of the γc coefficients from the ` = 1 version of Equation

(1). The y-axis is the difference between the ` = 6 coefficients and the ` = 1 coefficients.

21In Figure 1, CZs with a coefficient estimate greater than roughly 0.10 (in absolute value) are significant
at the 5% level.
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The main take-away from the figure is that there is appreciable variation in the rela-

tionship between ENSO and rainfall across time for the different CZs. We exploit these

differences to identify the effect of different anticipation horizons.

Figure 2: Differences in First-stage Coefficients

Modesto, CA

Pecos, TX
Fresno, CA
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Notes: The x-axis of the figure shows coefficient estimates from the 1-month ahead
(` = 1) version of Equation (1). The y-axis is the difference between the 6-month
ahead coefficients and the 1-month coefficients. There is one point for each CZ in our
sample.

For example, focusing on rainfall responses at the 1-month horizon, there are hundreds

of CZs where rainfall is close to non-responsive to ENSO (0 on the x-axis), and these are

“control” CZ’s. However, there are many more where ENSO increases rainfall, and even a

handful where it decreases rainfall. At the extreme, in Pecos, TX, a one standard deviation

increase in ENSO increases rainfall by 80 log points (120%).22 This cross-sectional variation

is one source of identification that we use.

We are also interested in how employment responses differ depending on the horizon of

the forecast. This second source of identifying variation is shown by the y-axis. Consider, for

example, Yuma, AZ, and Phoenix, AZ. These CZs are within the same state and are roughly

equally responsive at the one-month horizon (.4, x-axis). But Yuma is twice as responsive at

six months as it is at one month, while Phoenix is half as responsive. As a result of variation

22Figure A2 shows ENSO over time, measured in standard deviations. It is important to note that large
and sudden shocks are not rare. For instance, in the late 1990’s it rose by 2.5 standard deviations over less
than a year, only to fall by 3.5 standard deviations a year later.
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like this, two CZ’s might experience the same short-run “ENSO treatment” but different

long-run treatments, allowing us to separately identify responses to short-run and long-run

forecasts.

The figure also gives an indication of the locations where rainfall tends to be more strongly

associated with ENSO. Stronger ENSO predicts rainfall increases consistently across the

South and Southwest of the U.S. from Texas to California, up the West Coast, and to

a lesser extent in areas around Georgia down to Florida. Stronger ENSO predicts lower

rainfall in the northern Rocky Mountains and upper Midwest.

Figure 2 shows the variation in forecast coefficients and gives a measure of magnitude.23

One can get a further sense for the strength of the rainfall predictions of ENSO by examining

the F -statistic for the instruments (ENSO interacted with CZ fixed effects) from the first

stage regression. Because of the large number of variables we estimate (one for each CZ),

we calculate a conservative, lower bound on the conventional F -statistic using a version

of Equation (1) where we interact ENSO with a state fixed effect rather than a CZ fixed

effect (holding everything else about the data and estimation fixed). This is a lower bound

because it throws away all within-state variation from Figure 2. The resulting Montiel Olea

and Pflueger (2013) effective F -statistic is 50.3 at a 1-month horizon and 40.0 at a 6-month

horizon, compared to a critical value for worst case bias of 5% of 26.7 (see Table 2 for

each horizon). At all forecast horizons, the ENSO-based predictions are strong and jointly

significant.

The ENSO-driven forecasts substantially outperform simpler alternative forecasts. At a

1-month horizon, the correlation between realized rainfall and the ENSO-based forecast is

0.49 while the correlation with the one-month lag of rainfall is only 0.21. The quality of the

ENSO forecast falls slightly at a 6-month horizon, with a correlation of 0.46, but again it

outperforms the 6-month lag of rainfall, which has a correlation of only 0.07. The relatively

small decline in quality is notable and comes from the fact that skill for the ENSO forecast

derives, in part, from the timing of the relationship between ENSO and local rainfall. For

example, in the CZ that contains Valley County, MT, the 1-month-ahead connection between

ENSO and rainfall is strong (coefficient of -0.12) but the 6-month-ahead coefficient is 0.06.

The probability that the ENSO-driven 1-month-ahead forecast correctly predicts above-

average rainfall in the CZ is 0.62 while for the 6-month-ahead forecast it is 0.56, a difference

of 6 percentage points. Dallas, TX exhibits the reverse pattern of ENSO-driven rainfall.

There, the 6-month-ahead coefficient is a strong 0.36 while the 1-month-ahead coefficient

is a relatively weaker 0.13 (although both coefficients indicate a robust connection between

ENSO and rain). The 6-month-ahead ENSO forecast correctly predicts above-average rainfall

73% of the time—a value that increases by just 3 percentage points for the 1-month-ahead

23For the magnitude of the 6-month ahead forecast undifferenced, see Figure A4.
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forecast. On average across all CZs, a 1% stronger connection to ENSO at a given horizon

is associated with a 0.2% more accurate prediction of above-average rainfall.

4.2 Effect of predictable rainfall on employment

Our core interest is in employment adjustments in response to rainfall, depending on how

far in advance that rainfall could be predicted. As discussed above, we rely on two sets of

facts: first, that rainfall has important effects on construction sector productivity. Second,

that ENSO fluctuations predict medium-term rainfall changes in the United States and that

there is rich heterogeneity across place in how much and when these fluctuations translate

into rainfall. This heterogeneity allows us to build an IV regression where we instrument

for local rainfall using the CZ-specific ENSO response but are still able to control for CZ

fixed effects (time-invariant geographic heterogeneity) and month fixed effects (arbitrary

nationwide trends).

The second stage of the IV strategy is given by

∆` ln(Emp)c,t =δ2
t + ρ2

c,m(t) + β` ̂ln(Rain)
`

c,t + η2
cENSOt−`−6 (2)

+ θ2
c,1 ln(Rain)c,t−1 + θ2

c,2 ln(Rain)c,t−2 +
12∑
k=3

π2
k ln(Rain)c,t−k

+
12∑
k=1

ζ2
kTempc,t−k + εc,t

where ∆` ln(Emp)c,t is ln(Emp)c,t − ln(Emp)c,t−`−1. Estimating the effect on the change

in employment reduces unit root concerns and helps eliminate confounding variables up to

time t − ` − 1.24 Estimating with lags of employment on the right-hand side yields similar

estimates but requires the addition of employment lags in the first stage regression, so we

prefer the specification here.

The primary right-hand side variable of interest is ̂ln(Rain)
`

c,t. The variable is generated

by the first stage regression, Equation (1), and is the expected rainfall in CZ c at time t

which could be forecast from information available ` months beforehand.25

The second stage includes every variable from the first stage except the excluded instru-

ments: ENSOt−` interacted with CZ-specific indicators. In particular, it includes controls

for lags of temperature (which improve precision), lags of realized rainfall, lags of ENSO in-

24Formal panel unit root tests using the Im et al. (2003) procedure reject the null that the series contains
a unit root, but the high degree of autocorrelation in employment still leads us to prefer a specification in
differences.

25The estimation is done using an IV strategy, so the hat on top of the rain variable is purely a notational
reminder that the second stage regression involves unbiased rainfall forecasts.
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teracted with CZ indicators, and fixed effects for the month and CZ by month-of-year. These

controls remove confounding variation that is fixed within a location, that varies seasonally

within a location, that varies over time nationwide (including the month-to-month variation

in ENSO itself), and that might be caused by weather arriving before time t.

Table 2 displays estimated coefficients for the one through six-month ahead forecasts

(` ∈ {1, ..., 6}) on employment at time t. There is a clear and monotonic pattern. Recall that

rainfall substantially reduces construction productivity. Despite that, employment barely

responds to rainfall increases that could only be predicted one month in advance. In contrast,

employment is nearly five times as responsive to rainfall that could be predicted six months in

advance, and the difference in response at the two different horizons is statistically significant

at the 5% level.26 The further ahead the increased rainfall could be predicted, the larger the

employment response.

Table 2: Change in employment in response to predictable rainfall by length of forecast

DV: ∆` ln(Empt) (1) (2) (3) (4) (5) (6)

Forecast length (`): 1 2 3 4 5 6

̂ln(Rain)
`

t -.005* -.010** -.015** -.017** -.019** -.026***
(.003) (.004) (.006) (.007) (.008) (.010)

First-stage Eff. F 50.3 46.5 45.3 42.7 42.0 40.0
R2 .655 .707 .728 .730 .717 .689
N 194,947 194,947 194,947 194,947 194,947 194,947

* p < .10, ** p < .05, *** p < .01. Table displays estimated elasticities of the response of

employment at time t to rainfall estimated at time t−` to occur at time t. Standard errors

clustered at the CZ level are in parentheses. All estimates come from IV regressions that

include time fixed effects, CZ fixed effects, and CZ-by-month-of-year fixed effects, as

well as lagged rainfall, employment, and temperature controls shown in the estimating

equations (1) (first stage) and (2) (second stage). Rainfall predictions are the primary

explanatory variable and are based on CZ-specific responses to changes in ENSO. The

strength of the first-stage instruments (CZ-specific ENSO effects) is indicated by the

Montiel Olea and Pflueger (2013) effective F -statistics in the third-from-last row.

Why might employment respond more to forecasts available further in advance? One

explanation is that labor market frictions and adjustment costs make instantaneous responses

costly.27 Above, we discussed several of these costs, such as implicit layoff taxes generated

26While few of the other coefficients are statistically significantly different from one another, the monotonic
pattern and difference in magnitudes is clear. The calibration described in Section 5 reflects the uncertainty
in these parameter estimates.

27If people respond differently to relatively accurate forecasts (due to risk aversion, for instance), then
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by the financing rules of the unemployment insurance system.28 We also discussed a series of

costs in terms of recruiting, screening, and hiring. It is important to keep in mind that these

hiring costs are relevant for firms even if our empirical results reflect employment decreases

in response to increased rain. This is because rainfall is only a temporary productivity shock.

Firms will soon need to re-staff after excess rain subsides, and hiring new workers will require

paying those costs.

Recognizing this, a firm which suddenly discovers that it will face a negative productivity

shock during the next month (estimates for ` = 1) might simply prefer to continue to employ

less productive workers for a short time rather than laying them off and having to replace

them through a costly screening process soon after. After all, the costs of replacing a worker

are roughly equal to one month salary (Dube et al., 2010), and it is unlikely that workers’

productivity falls all the way to zero during the period of excess rain. A firm which discovers

that it has six months until that productivity decline, on the other hand, can take advantage

of the regular turnover process and simply delay hiring replacements for those who leave.29

Whether or not this is realistic depends on the rate of natural turnover in construction,

as well as the magnitude of the rain-induced employment responses that we document. The

turnover rate can be measured using linked Current Population Survey (CPS) data, which

shows that in a given month, 2% of construction workers leave their current employer for

another. To understand the magnitudes of the responses that we identify, consider a very

ENSO-responsive CZ that sees rainfall rise by 40 log points in response to a one standard

deviation ENSO shock (the heterogeneity in ENSO-responsiveness is given in Figure 2).

At the 6-month horizon, when employment shows the greatest responses, the second stage

estimates in Table 2 suggest that this translates into a roughly 1% decline in employment.30

It is not difficult to imagine a firm with one-month departure rates of 2% managing a 6-

month decline of 1% exclusively using hiring delays. At the same time, this effect size shows

that employment responses to anticipatable rainfall are non-trivial. The size of the effect we

find in comparison to month-to-month turnover suggests that the estimates are plausible and

reinforce the industry journals cited in Section 2 discussing the important, negative effects

of rainfall on productivity.

One way to empirically assess the productivity effects associated with ENSO-driven rain

one could also find differences in response. But as we note in the previous section, the forecast quality is
roughly similar across the horizons we consider. And if people respond more to more accurate forecasts,
then it would lead to the reverse of the pattern we find.

28Again, even in the absence of rules like these, if sudden firing raises workers’ perceptions of the riskiness
of the job, then it can still be costly to firms who have to renegotiate higher wages to compensate workers
for risk (as argued by Smith (1776)).

29Similarly, one can consider firms to be paying to retain less productive workers during a brief, negative
shock rather than bear the costs of hiring new workers after the shock is over. We emphasize hiring as a
prelude to our model setup below.

30exp{.4×−.026} = .9896
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is to regress construction-sector wages on surprise rainfall, with the logic being that there

cannot be any ex ante adjustment of employment to surprise rainfall. The QCEW only

reports data on the wage bill on a quarterly basis, so we cannot perfectly replicate our

baseline employment analysis, but Table A1 reports estimates of the quarterly analogue

of Equation (2) where the dependent variable is log wage bill and the main independent

variable is the portion of realized rain that is associated contemporaneously with ENSO.31

The regression shows that a 1% increase in surprise rainfall decreases earnings by 0.038%.

Given that the results are based on the wage bill and that we find little to no employment

response to more surprising rainfall, the effect could come through changes in the wage or

hours worked.

These reduced form estimates and back-of-the-envelope calculations are useful for em-

pirically identifying market responses. By themselves, however, they do not allow us to

understand the implications of rainfall shocks for worker and firm outcomes (aside from em-

ployment changes), and they do not allow us to derive quantitative implications of rising

rainfall volatility driven by climate change. In the next section, we develop a model of em-

ployment dynamics that links them to adjustment costs for workers and firms. We use our

reduced form estimates of the employment responses to calibrate the adjustment costs that

firms face, and use this to quantify the consequences of rising rainfall volatility and the value

of improving the quality of forecasts.

5 Model and counterfactuals

5.1 Model of labor market with adjustment costs

The elasticity estimates in Table 2 capture the response of the construction sector within

a local labor market to news about rain. These responses reflect both the adjustment of

the supply of labor in the construction industry as well as demand for labor by construction

firms. In turn, adjustments on both sides of the market reflect conditions in other sectors

of the economy. For example, construction services are intensively used for investment, so

demand for construction services reflects investment decisions throughout the local labor

market. To account for these cross-sector linkages, we model the entire local labor market’s

response to rain, incorporating spillover effects through the input-output structure of the

economy.

We model the local labor market as a small, open, multi-sector economy, populated

by firms in each sector and a representative household. This model features a number

31As in the employment regressions, we control for previous news about ENSO as well as previous meteoro-

logical conditions. In other words, we regress quarterly, CZ-level construction-sector wage bill on ̂ln(Rain)
0

t

as generated by a quarterly version of Equation (1), plus quarterly versions of the baseline control variables.
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of elements common to standard multi-sector models in the spatial economics literature

(Redding and Rossi-Hansberg, 2017). For example, to capture cross-sector spillover effects,

we incorporate intermediate inputs and calibrate to match the input-output structure of

the economy, and to model frictions to labor adjustment on the supply side of the market,

we incorporate heterogeneous Gumbel preferences of households across sectors and time

(Caliendo and Parro, 2015, Caliendo et al., 2018, 2019). To model frictions on the demand

side, we incorporate convex adjustment costs to hiring by firms (Muehlemann and Pfeifer,

2016). In our counterfactuals, we focus on the importance of different levels of adjustment

costs for firms. We introduce these costs as employees diverted from production when a firm

changes their hiring rate over time.

We begin by describing the input-output structure of the economy. In order to calibrate

the model directly to make and use input-output tables from the Bureau of Economic Anal-

ysis (BEA), we model each sector’s output as a local good that is non-traded, and model the

commodities used by households, firms, and the government for consumption, intermediate

inputs, real estate investment, and capital formation as (potentially) traded goods. There

are N sectors, which we index with i, and J commodities, indexed by j. Local sector out-

put, denoted by Yit, gets combined together into commodities according to a Cobb-Douglas

technology:

XS
jt =

M∏
i=1

(
Yit
Φij

)Φij

. (3)

Here, XS
jt is the quantity of commodity j supplied by the local economy and Φij ≥ 0 is a

Cobb-Douglas weight with
∑N

i=1 Φij = 1. We assume that this local supply of commodities

gets produced under perfect competition, which links the price of commodities, Pjt, to the

price of sectoral output, P Y
it as

Pjt =
M∏
i=1

(P Y
it )Φij (4)

and implies that Φij is the share of local commodity revenue paid to each sector, so that total

revenue of i is P Y
it Yit =

∑J
k=1 ΦijPjtX

S
jt. We calibrate these shares to match the corresponding

revenue shares in the make tables from the BEA. Note that for non-traded commodities, this

local supply of commodities will need to equal local demand for commodities in equilibrium.

We discuss the market clearing conditions when we turn to defining equilibrium below.

Next, we turn to the production of Yit by local firms under perfect competition. The

output of each firm in sector i at time t is Cobb-Douglas in capital, Kit; labor used in

production, Lit; and an index for commodities used as materials, Mit.

Yit = Ait
(
Kαi
it L

1−αi
it

)1−γi
Mγi

it where Mit =
J∏
j=1

(
Mijt

Γij

)Γij/γi

(5)
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with γi ≡
∑J

j=1 Γij < 1, and Γij ≥ 0. The variable Mijt denotes sector i’s demand for

commodity j, and the variable Ait denotes total factor productivity. We assume that realized

rainfall impacts construction sector productivity, but does not impact other sectors:

lnAit = ln Āi − 1{i = Construction}ε ln Raint. (6)

Here, Āi is a sector-specific constant, while ε is the elasticity of construction sector produc-

tivity to realized rain.32

Due to perfect competition, γi is the share of firm revenue spent on materials,

PM
it Mit = γiP

Y
it Yit where PM

it =
J∏
j=1

P
Γij/γi
jt . (7)

Here, PM
it is an index of materials costs for the sector given commodity prices. The purchases

of commodity j are

PjtMijt = ΓijP
Y
it Yit. (8)

Additionally, αi is the share of revenue net of material costs (value-added) paid to capital,

RtKit = αi(P
Y
it Yit − PM

it Mit) = αi(1− γi)P Y
it Yit, (9)

where Rt is the capital rental rate, which, for simplicity, we assume is common across sectors

due to mobile capital.

In the absence of frictions to hiring labor, the firm would pay a fraction 1− αi of value-

added to labor. However, we assume that hiring is costly for the firm because it requires

the use of employees devoted to the task. The productive labor input of the firm consists of

those employees which it does not need to devote to hiring new workers. Given its current

number of workers, Nit, the fraction of its labor force that must be devoted to hiring is

1− Lit
Nit

=
κ

2

(
Hit −Hi,t−1

Hi,t−1

)2

(10)

If a firm in steady state (Hit = Hi,t−1) wants to increase or decrease its hiring rate, then

it must divert some of its workforce away from production. These costs are convex so that

larger deviations of Hit from Hi,t−1 incur greater costs, and κ is the key parameter that pins

down the magnitude of these hiring costs. To allow for non-zero adjustment costs in all

sectors while keeping a parsimonious specification, we make the simplifying assumption that

32In Appendix Table A7, we show that allowing rain to also impact productivity in the agriculture industry
(either positively or negatively) does not significantly change our model’s predictions for the elasticity of
construction employment to anticipated rain.
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this parameter is common across sectors.33

The importance of hiring adjustment costs can be seen through the first order condition

for new hires, which states that the marginal benefit of a new worker must equal the marginal

cost of a new hire. The marginal benefit is forward looking because workers may stay with

the firm for many periods. In particular, the firm’s employment evolves as

Nit = (1− s)ΠStay
i,t Ni,t−1 +Hit (11)

where ΠStay
i,t is the fraction of the firm’s past employees who stay in the sector, and s is the

fraction of these workers who separate from the firm and must find a new job in the sector.

The first term captures the total number of workers who stay with the firm over time.

Given the law of motion in (11), the shadow value of another worker to the firm, Vit,

satisfies the following forward looking condition.

Vit = P Y
itMPLit

Lit
Nit

−Wit +
1− s
1 + r

EtΠStay
i,t+1Vi,t+1 (12)

where P Y
it denotes the competitive price of sector i output, MPLit ≡ (1 − αi)(1 − γi) YitLit

is

the marginal product of labor, Wit denotes the competitive wage in sector i, and r denotes

the interest rate at which the firm is externally financed. The firm values a worker based on

the expected discounted value of the gap between the marginal revenue product of labor and

the wage, accounting for the chance that the worker stays with the firm over time. When

the firm anticipates that future marginal revenue products will be high relative to wages, it

will value building up its current labor force.

It will do so trading off these benefits against current hiring costs. That is, the value of

an additional worker must equal the marginal cost of hiring an additional worker.

Vit = P Y
itMPLitκ

(
Hit −Hi,t−1

Hi,t−1

)
Nit

Hi,t−1

− Et
P Y
i,t+1MPLi,t+1

1 + r
κ

(
Hi,t+1 −Hit

Hit

)
Hi,t+1

Hit

Ni,t+1

Hit

(13)

The expression for the marginal cost has two terms. The first represents the cost to the

firm from reduced output in the present due to diverting labor toward hiring, while the

second represents the gain to the firm from avoiding future lost output. When the value

of additional workers is high in the present, the firm will be more willing to forego present

output to build up its labor force through hiring.

33Although this assumption is inconsistent with evidence that adjustment costs are higher in high wage in-
dustries (Muehlemann and Pfeifer, 2016), our results are robust to including heterogeneity in κ. In Appendix
Table A8, we show that the heterogeneity estimated in Muehlemann and Pfeifer (2016) as well as extreme
forms of heterogeneity do not appreciably change our model’s predictions for the elasticity of construction
employment to anticipated rain.
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Notice that in the absence of hiring costs (when κ = 0), the firm will hire additional

workers until the marginal benefit of hiring is zero. In this case, because Vit = 0, the valuation

condition in (12) reduces to stating that the wage must equal the marginal revenue product

of labor. In this special case, 1−αi is the faction of value added paid to labor. When κ > 0,

hiring adjustment costs lead to departures from the equalization of wages to the marginal

revenue product of labor, and link hiring decisions to the anticipated future gaps between the

marginal revenue product and wages. When the present value of these gaps is positive, the

firm will tend to increase its hiring. News of reduced future productivity in the construction

sector—such as increases in forecasts of rain—will reduce the value of hiring workers today,

leading to current reductions in employment.

Of course, the total impact of reductions in future productivity depend also on the

response of labor supply. Workers will also anticipate that they will face low future wages,

and, if they also face adjustment costs, they will want to exit the sector preemptively to

avoid being stuck with low income in the future.

To capture this possibility and maintain tractability, we assume that workers are members

of a representative household that provides perfect consumption and housing insurance, and

that allocates individuals to work across sectors. In addition to working in a sector, each

individual can also be non-employed. Let i = 0 index this non-employment state, and denote

individual n’s employment status at time t as it(n) ∈ {0, 1, . . . , N}. Given discount factor

β ∈ [0, 1), average expected discounted utility of household members is

Ut =
∞∑
h=0

βh
[
lnCt+h + µS lnSt+h +

∫ 1

0

νit+h−1(n),it+h(n),t+h(n)dn

]
where Ct =

J∏
j=1

(Cjt/µ
C
j )µ

C
j

(14)

where µCj is the share of consumption expenditure on commodity j, St denotes housing

services (equal to the stock of housing), µS captures the importance of housing services,

and νi,i′,t(n) is an individual preference shock for transitioning from i at t − 1 to i′ at time

t. These preference shocks generate heterogeneity in how workers decide to switch sectors

throughout their career. Changes in relative wages across sectors (driven by productivity

shocks to the construction sector, for example) can drive these decisions, but these preference

shocks allow workers to have disutility from leaving their job, or from switching sectors even

in the absence of pecuniary benefits to doing so.

We assume that these preference shocks are Gumbel distributed independently across

i′ with shape 1/θ and independently and identically distributed over time and individuals.

The parameter θ captures heterogeneity across workers in their preferences to switch sec-

tors. When θ is low, there is low dispersion across individuals so individuals are more willing

to shift across sectors as the value of employment in each sector changes. In other words,
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when other factors like family needs, geographic mobility, injury, or aging or educational

attainment (all of which we model in a reduced form way as a preference shock) are unim-

portant, then θ will be low implying little dispersion in preferences, and workers will be very

responsive to changes in relative pay across sectors. We interpret this as suggesting very

low adjustment costs (on the household side), because workers are very willing to respond

to monetary incentives. If, on the other hand, θ is high, then dispersion in non-monetary

preferences is large, and mobility responses to shocks to the relative wage will be muted.

For each moment in time, the representative household chooses consumption, housing

investment, and an allocation of individuals across industries to maximize the expected

discounted average utility of its members subject to its budget constraint and a housing law

of motion. Its budget constraint is

J∑
j=1

Pjt(Cjt + ISjt) ≤
M∑
i=0

WitNit + Tt (15)

where ISjt denotes purchases of commodity j for investment in housing, Wit denotes income

from employment status of i at time t—either the wage in a sector or income when non-

employed—and Tt denotes net taxes and transfers from the government. The household’s

housing investment technology is

St = (1− δS)St−1 + ISt where ISt ≡
J∏
j=1

(
ISjt
µSj

)µSj

. (16)

The parameter δS is the housing depreciation rate, and µSj is the share of housing investment

expenditure on commodity j.

The solution to the consumption and investment portion of the representative household’s

problem can be characterized as follows. The costs to the household of consumption and

new housing at time t are, respectively,

PC
t =

J∏
j=1

P
µCj
jt and P S

t =
J∏
j=1

P
µSj
jt (17)

and consumption and real estate investment expenditure on commodities satisfy, respectively,

PjtCjt = µCj P
C
t Ct and PjtI

S
jt = µSj P

H
t I

S
t . (18)

This result allows us to calibrate household consumption preferences and the housing invest-

ment technology using data on each commodity’s share of total consumption and residential
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investment expenditure.

Investment in housing is characterized in terms of these price indices by

µS
Ct
St

=
P S
t

PC
t

− β(1− δS)Et
Ct
Ct+1

P S
t+1

PC
t+1

. (19)

This condition states that the marginal rate of substitution between consumption and hous-

ing services has to equal the user cost of an additional unit of housing in units of consumption.

The later can be interpreted as the implicit rental price of the housing stock in units of con-

sumption. As a consequence, we can calibrate µS to the ratio of implicit rent on housing

services to total consumption expenditure.

Finally, we focus on the allocation of workers across industries. Under our Gumbel

assumption on idiosyncratic preference shocks, the utility value of allocating another worker

to employment status i during period t is

Uit =
Wit/P

C
t

Ct
+ βEt

[
θ ln

M∑
i′=0

ωi,i′e
Ui′,t+1/θ

]
(20)

where ωi,i′ ≥ 0 with
∑M

i′=0 ωi,i′ = 1 captures average preferences for transitioning from i to i′.

The value of an additional worker in sector i depends on the marginal utility value of the real

wage in that sector as well as anticipated future real wages across all industries, accounting

for the chance of reallocating the worker in the future. In this way, labor supply is forward

looking, with future wages impacting the current allocation of workers across industries.

Specifically, the share of workers shifting from i at time t− 1 to i′ at time t is

Πi,i′,t =
ωi,i′ exp(Ui′,t/θ)∑M
ĩ=0 ωi,̃i exp(Uĩ,t/θ)

(21)

leading to the following employment law of motion

Ni′t =
M∑
i=0

Πi,i′,tNi,t−1. (22)

This result provides an interpretation for ωi,i′ as the share of workers transitioning when all

employment statuses have equal value (when Ui′t = Uit for all i′, i). It also shows that 1/θ is

the semi-elasticity of employment flows to changes in the value of employment. When labor

supply adjustment costs are high, it takes a larger change in the value of employment to

generate a shift of workers across sectors.

To close the model, we assume that absentee investors own the local capital stock and

are financed at the same interest rate as firms, r. They accumulate capital through an
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investment technology that is Cobb-Douglas in commodities

Kt+1 = (1− δK)Kt + IKt , and IKt ≡
J∏
j=1

(IKjt )
µKj . (23)

where IKjt denotes purchases of commodity j for capital investment. Under this assumption,

the cost of a new unit of capital, and capital investment expenditure are, respectively,

PK
t =

J∏
j=1

P
µKj
jt and PjtI

K
jt = µMj P

K
t I

K
t . (24)

The capital investor’s no-arbitrage condition is

1

1 + r
EtRt+1 = PK

t −
1− δK

1 + r
EtPK

t+1

The expected discounted capital rental rate must equal the user cost of capital.

With this final assumption, we can now define equilibrium. Given an exogenous process

for rain in the local economy, {Raint}∞t=1, a set of traded commodities, J , with exogenous

prices {Zjt}j∈J , an initial condition for capital of K1, initial conditions for labor {Ni0}Ni=0,

an initial condition for hiring, {Hi0}Ni=1, exogenous government expenditure on commodities

of {Gj}Jj=1, exogenous transfers of {Tt}∞t=1, exogenous non-employment compensation of

{W0t}∞t=1, and an external interest rate of r, a rational expectations equilibrium is a stochastic

process for prices/valuations

{{Pjt}Jj=1, {P Y
it }Ni=1, {PM

it }Ni=1, P
C
t , P

S
t , P

K
t , Rt, {Vit,Wit}Ni=1, {Uit}Ni=0}∞t=1

and quantities

{{XS
jt}Jj=1, {Yit}Ni=1, {Mit}Ni=1, {Hit}Ni=1, Ct, {Cjt}Jj=1, St, {ISjt}Jj=1, Kt+1, {IKjt }Jj=1, {Nit}Ni=0}∞t=1

such that

1. (Local Commodity Supply) Local production of commodities satisfies (3), expendi-

ture on sector i output is P Y
it Yit =

∑J
j=1 ΦijPjtX

S
jt, and commodity and sectoral output

prices satisfy (4).

2. (Firms) Local sectoral output is given by (5) for productivity given rain satisfying (6),

total materials satisfying (7), commodity-level materials satisfying (8), capital demand

satisfying (9), labor in production satisfying (10), labor demand satisfying (11), the

value of an additional worker satisfying (12), and hiring satisfying (13).
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3. (Households) The household stock of housing evolves as (16), the prices of consump-

tion and new housing are (17), commodity level consumption and expenditure satisfy

(18), housing demand satisfies (19), the value of allocating a household member to i is

(20), and the flow of household members from i to i′ is (21) so that the allocation of

workers satisfies (22).

4. (Capital Supply) The supply of capital evolves as (23) with the price of investment

and investment demand satisfying (24).

5. (Factor Market Clearing) The supply of capital equals total demand across sectors,

Kt =
∑N

i=1Kit, firm level labor demand in (11) corresponds to the supply of workers

provided by households in (22).

6. (Traded Commodity Prices) For each traded commodity j ∈ J , the local price of

commodity output equals the external price: Pjt = Zjt.

7. (Non-Traded Commodity Local Market Clearing) For each non-traded com-

modity j 6∈ J , total local supply of the commodity equals total local demand:

XS
jt =

N∑
i=1

Mijt + Cjt + ISjt + IKjt +Gj.

5.2 Calibration

We calibrate the model to match input-output tables from BEA, monthly employment

transition rates across sectors from the Current Population Survey, and a 2% annual per-

centage rate for household discounting and the firm’s interest rate. See Appendix B.1 for

summary statistics of the calibration. This pins down all parameters except those control-

ling adjustment costs, the effect of rainfall on construction productivity, and the impulse

response of rainfall to news about rain.

To model the arrival of news about future rain, we specify the following stochastic process

for rain.

ln Raint =
5∑

k=1

ρk ln Raint−k + υt with υt =
L∑
`=0

nt,t−` (25)

Here, υt is the realized shock to rain at time t, while nt,t−` denotes the component of this

realized rain shock that is known at time t− `. The key assumption in this equation is that

news shocks of the same size but at different horizons generate the same change in shocks

to realized rain. The parameters (ρ1, . . . , ρ5), allow us to capture persistence to changes

in rainfall after a shock to rain. Since firms and workers anticipate future rain in making
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their decisions within the model, they may respond differently to the shock depending on its

persistence.

Accordingly, we discipline these persistence parameters using a two step procedure. First,

we estimate the empirical impulse response of rainfall after time t to our forecasts of rainfall

at time t−` for ` = 1, . . . , 6 by running (2) where the dependent variable is log realized rain.

Note that this specification includes controls for realized rain on the right hand side up until

time t, so the coefficient estimates are mechanically zero for h < 0. The empirical magnitude

of the impact of news by horizon is similar across `, consistent with our assumption that

news shocks have the same impact on rain shocks. In the second step, we match these

estimates by pooling across ` and choose the persistence parameters ρ1 to ρ5 to minimize the

sum of the squared difference between the first step estimates and the autoregressive model

after scaling by the first step standard errors. See Figure A7 in the appendix for the fitted

response.

The elasticity of construction productivity to rain, ε, controls the overall magnitude of

responses of the economy to rain shocks. Intuitively, changes in productivity get passed

through into wages, so we choose this parameter such that the model generates quarterly

average impacts of contemporaneous rain on the wage bill that match our empirical estimate

reported in A1.

To estimate the labor supply and demand adjustment cost parameters, θ and κ, we mini-

mize the distance between the model’s normalized prediction for adjustment of construction

employment to news about rain and our estimates in Table 2. This provides six target

moments for the two labor adjustment cost parameters.

Recall that θ measures the degree of heterogeneity in worker preferences for moving across

sectors. A low value of θ would mean that workers are relatively homogeneous, so for a given

change in the value of being in a sector, a large fraction of the workers would want to change

their sector. High values imply that it would take a large shift in value to induce substantial

movement of workers across sectors. Thus, we view θ as capturing labor supply adjustment

costs.

The κ parameter measures demand side adjustment costs. It is the cost to the firm of

adjusting its hiring rate, as shown in Equation (10). For a higher value of κ, firms must

devote more of their production toward hiring efforts (for instance by using more time for

interviews, advertising positions, reviewing applications, or training).

The values for θ and κ that best fit the set of empirical rainfall forecast and employment

elasticities are shown in Table 3. We can interpret the estimate of θ using Equations (20) and

(21). The inverse of θ is the semi-elasticity of employment flows to the value of employment.

An increase in the real wage difference between two sectors in a single month by 100% of

steady state consumption (holding fixed expectations of the future value of both sectors)
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Table 3: Inferred Parameters and Model Fit

Estimates Fit By Horizon

Value h 0 -1 -2 -3 -4 -5 -6

θ 32.7 Uncentered R2 99.6% 98.2% 98.1% 96.4% 94.4% 94.5% 95.9%
κ 65.5 Centered R2 97.3% 93.9% 93.6% 89.3% 85.2% 83.8% -
ε 0.17 ` 1 to 6 1 to 6 2 to 6 3 to 6 4 to 6 5 and 6 6

Target Moments X

Notes: Parameter values minimize the mean squared error in the target moments between
the estimates and the model with ε chosen to scale the average of model predictions to match
the average of estimates across `. We omit the centered R2 at horizon 6 because there is only
one comparison value so it is mechanically 100%.

will increase the odds that a worker changes sectors by 3% during that month.34

Using Equation (10), the estimate of κ implies that devoting 1% of a firm’s labor force

to hiring rather than production during a month will generate a 1.7% increase in the firm’s

hiring rate, while devoting 10% of the labor force generates a 5.5% increase in the hiring rate

during that month. Previous work also finds convexity in hiring costs using firm-level data

(Muehlemann and Pfeifer, 2016). The value we find is larger than those previous estimates,

although caution must be taken with direct comparison because the model calibration pro-

vides estimates of marginal hiring costs while the prior empirical work estimates average

costs.35

Intuition on how the model determines the appropriate level of κ can be gained from the

visualization in Figure 3. When κ is low (adjustment is less costly), employment responds

strongly to news about rain at all horizons. When κ is high all employment responses are

low. The scale of response is not the only difference. In both cases, differences across forecast

horizon are small relative to differences across horizon when κ is at our baseline estimate.

In that case, the responses are spread out across news horizon. This spreading captures the

importance to the firm of smoothing out hiring over time in the presence of convex hiring

costs. Intuitively, if adjustment costs are prohibitive, no adjustment occurs, while when

adjustment costs are low, adjustment happens easily and there is little need to smooth over

time. When adjustment costs are moderate, the employment responses get spread out.

Table 3 also shows measures of model fit, both for the target moments—the elasticities

of employment with respect to rainfall forecasts at the time when rainfall arrives—and for

34That is, ln
Πi,i′,t
Πi,i,t

changes by .03 (1/θ) when (Wit −Wi′t)/P
C
t increases by 100% of steady state con-

sumption.
35In sensitivity analysis reported in Table A8, we show that allowing heterogeneity in κ across sectors does

not appreciably change the results we report for the construction industry.
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non-target moments of that same elasticity for months after news has arrived but before

the rainfall shock has occurred. The empirical estimates for these moments can be found in

Figure A6. The table reports R2 values that are the amount of variation in the empirical

point estimates that is explained by the model-derived employment elasticities. One can see

that even for these non-targeted moments, the model fits well, with a minimum R2 of 84%.

5.3 Counterfactuals

One advantage of our model is that it allows us to interpret the rainfall shocks that we

observe in more meaningful units. Using our benchmark calibration, we find that a one

standard deviation above-mean rainfall shock is equivalent to an 17% loss of productivity.

A 17% productivity decline is clearly meaningful, and in this section, we focus on how firms

respond, how the costs of this shock are shared between workers and firms, and how the size

of adjustment costs determines these responses.

Because our primary interest is in how firms might improve their ability to adapt (e.g., by

negotiating more flexible labor contracts with workers or by diversifying their mix of projects

to allow project-specific labor levels to be more responsive), we keep worker-side adjustment

costs (θ) constant at the level of our baseline calibration. Instead, our counterfactuals focus

on how changes in firms’ ability to respond to shocks (κ) affects their employment dynamics

and profits, as well as how this interacts with the quality of weather forecasts.

5.3.1 How firm-side adjustment costs drive employment dynamics

Above, we summarized a number of reasons why firms cannot freely or flexibly adjust

their labor pool. An advantage of our method is that it captures these costs without imposing

assumptions on the types of activities that are costly. Rather, it simply infers them from the

dynamic pattern of employment responses. How would employment responses differ if the

magnitude of adjustment costs was different? What features of the dynamic adjustments

help us to infer those costs? How important are the magnitudes of responses, rather than

their dynamic pattern, for quantifying these costs? Figure 3 helps answer these questions.

In Figure 3, we compare the empirical, reduced form estimates (from Table 2) with those

derived from the calibrated model. Comparing the filled circles (our reduced form estimates

from above) with the hollow squares (derived from our baseline calibrations of κ and θ), our

model very closely replicates the dynamic responses that we observe in the data.

More interesting, however, Figure 3 also presents simulated dynamics of alternative cal-

ibrations in which we assume that the firm-side adjustment costs (κ) are ten times larger

(hollow diamonds) or one-tenth as large (hollow triangles). Our primary result that responses

are monotonically increasing in forecast horizon is generally true across all three calibrations.
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Figure 3: Empirical and Model-Based Elasticity Estimates for Construction Employment
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Notes: The figure shows coefficient estimates of the effect of rainfall forecasts on
construction sector employment from Table 2 compared to the model-derived
estimates for the baseline adjustment cost parameters (see Table 3) and the
estimates under counterfactual adjustment costs.

However, the magnitudes of these differences matter.

As one would expect, the higher the adjustment costs, the lower the overall level of

adjustment that occurs. However the ratio of responses to 6-month forecasts compared to

1-month forecasts becomes much larger. With adjustment costs 8 times larger than those we

estimate in the data, responses to 6-month-ahead forecasts are eight times larger than the 1-

month responses. Compare this to a four-fold difference under our baseline adjustment cost

estimates. When adjustment costs are much smaller than our baseline estimates, 6-month

responses are less than three times larger than 1-month responses. Thus, the larger are the

costs of adjusting, the less overall adjustment there is, but also the greater is the wedge

between responses to short-run and medium-run forecasts. This is because as adjustment

costs become larger, it becomes more important to spread them out over time. This effect

arises from the convex adjustment costs that make large adjustments much more costly than

small ones, and it is important for understanding how the burden of adjustment is split

between workers and firms in our counterfactuals below.
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5.3.2 How the burden is shared between workers and firms

To understand how workers and firms split the costs of productivity shocks, we calculate

the firm’s present value of profits and the worker’s present value of income. We focus on

how this present value (PV) changes at time t − ` when a new forecast of a rainfall shock

occurring at time t becomes available. We focus on the PV at the time of the information

(t − `) to capture the full effect of the rainfall shock as well as any adjustments that occur

before the rain actually arrives. Our reduced form estimates show substantial adjustment

does occur prior to the arrival of rain (between t− ` and t).

Figure 4 shows how the PV of profits and labor earnings change when news of a rainfall

shock becomes available. For both, we present different estimates depending on the firm-side

adjustment costs (κ) and the forecast horizon (`).

Panel (a) shows the profit effects. Focusing on our baseline calibration (solid blue circles),

a rainfall shock that is forecasted only one month ahead leads to a substantial 0.08% decline in

the PV of profits because firms will see a large productivity decline but have limited ability to

adjust employment with such short notice. Remarkably, having this information six months

in advance instead, they are able to offset almost the entire profit loss via adjustments during

those six months.

The hollow red circles and hollow gray squares show analogous results for larger and

smaller adjustment costs, respectively. When adjustment costs are very large, the profit

losses are much more substantial, but interestingly, are less steeply related to the forecast

horizon. This is because even at six months, firms ability to adapt to the productivity shock

is relatively constrained, and it makes little difference whether the forecast is available six

months or one month in advance.36

The profit results showed that firms monotonically benefit from longer forecast horizons

that afford them more time to adjust, and that more costly adjustment substantially reduces

the present value of profits. The primary mechanism of adjustment is through management

of their workforce and hiring. For this reason, Panel (b) shows that workers’ experience the

exact opposite patterns of firms. The longer the forecast horizon, the larger the decrease in

the PV of earnings. This is because long anticipation horizons allow the firm to adjust more

effectively and pass the costs of the rainfall shock onto workers.37 In the baseline calibration

36When the adjustment costs are low, the present value of firm’s profits actually increase in response to
the shock. In all cases we analyze, the rainfall shock leads to greater scarcity of capital in the economy
because construction sector output is crucial to the creation of capital (see Table A5). The market bids up
the price of capital in anticipation of this scarcity, which is precisely the present value of profits for firms
across the economy. In the cases with larger values for κ, this increase in profits from scarcity is offset by
rising labor adjustment costs.

37And again mirroring the firm case, when adjustment costs are extremely high, workers are actually
slightly better off due to a negative productivity shock because their relative price is bid up because of
anticipated scarcity.
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Figure 4: Change in Present Value of Profit and Labor Value When News About Rain
Arrives
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(b) Labor Value

Notes: The figure shows the present value of profit for firms (Panel 4a) and the present value of earnings for
workers (Panel 4b) as a function of the forecast horizon and three different values of the firm-side adjustment
cost parameter, κ: high (red with hollow circles), baseline (blue with filled circles), and low (gray with hollow
squares) adjustment costs. All values are calculated at the time when news about the rain shock arrives
(time t − ` in Equations (1) and (2)). For example, the 6-month-ahead forecast effect is the present value
from 6 months prior to the arrival of rain.

that matches the data, the lost PV of a 6-month forecast are roughly twice the losses of a

1-month forecast.

This result illustrates that the adjustment cost parameters we estimate to match the

data imply that firm-side adjustment costs are larger than the worker-side ones. To see this,

note that any agent facing convex adjustment costs values earlier information because it

allows her more time to smooth the adjustment and minimize the incurred costs. Indeed,

if we dramatically increase the worker-side costs, we see that workers also begin to benefit

from earlier information relative to later information (results available upon request). In our

context, though, firms’ mechanism of adjustment is through layoffs and reduced hiring, both

of which shift the costs of the shock onto workers. Despite the fact that workers also face

costs of switching sectors, they prefer less advanced information because avoiding the costs

that firms shift onto them more than outweighs the inconvenience that they themselves face

from short notice.38 In summary then, the fact that the estimates in Panel (b) are upward

sloping (less negative at short horizons) is not an inherent feature of our model, but a result

that illustrates that demand-side adjustment costs are the key drivers of our results.

38These results become even more extreme if workers are myopic. In a sensitivity analysis, available upon
request, workers that do not pay attention to expected productivity shocks will not move out of the sector.
This dampens overall employment response to the shock but places more of the incidence of the productivity
loss on the workers.
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5.3.3 Quantifying the costs and benefits of adjustment for the firm

In this setting, firms respond to weather by adjusting their inputs—including labor—in

response to news about upcoming shocks. Workers adapt by changing sectors. Adaptation

is costly due to rigidity in adjustment, but it also brings benefits in the form of reduced

damage from rain shocks. The present values of profit and earnings at the time when news

arrives, shown in Figure 4, capture the net effect of both of these channels. In this section,

we break down the different sides of adaptation, focusing on costs and benefits for firms.

The pure adjustment costs—the level of κ times the change in hiring in Equation (10)—

are straightforward. Changing hiring always comes with a cost, and the size of the change

determines the scale of the cost. If a manager wants to adapt to an upcoming shock by

making large changes in employment, they either need to pay a high cost for a quick change

or spread their employment changes out over time so that they do not climb so high up their

convex cost curve. The empirical estimates and model results in Figure 3 show that the

magnitude of the employment change grows monotonically with increasing forecast horizon.

When assessing the trade-off between higher costs and faster employment changes, the em-

pirical results indicate that managers and firms are deciding that it is worth it to engage in

more adjustment if they can spread the costs out over time.

Figure 5 shows impulse responses of the hiring wedge over time. The figure translates the

employment changes we see empirically into costs—in units of productivity lost by devoting

it to hiring—that the firm pays to adjust its hiring. The figure shows these costs each month

leading up to, during, and after a rainfall event. The lines show costs for different forecast

horizons, and the panels (a, b, and c) show the value for high, baseline, and low values of κ

respectively.

One can see that in the baseline (panel b), firms find it worthwhile to pay substantial

adjustment costs at all forecast horizons, a result that is reflected in the employment changes

in Figure 3. For larger adjustment costs, firms want to adjust their labor force, but high costs

prevent them for making as substantial of changes, particularly at short forecast horizons.

Within the horizons we investigate, labor adjustment and cost rise monotonically every

month in this high cost-case. In a world with high κ, relatively surprising rainfall events

would see very little labor force adjustment and a low cost paid for adaptation. This is

precisely because it would not be worthwhile to engage in such costly behavior.

In panel (c), one can see that there is also little cost paid for adjustment when κ is low,

but now it is despite a large change in the labor force. Firms get a high “bang for their

buck” when adapting to a shock if adjustment is cheap.

Together, these figures tell an important story for climate adaptation and estimation

of climate damages. If the world is one with high costs of adjustment, like the high κ

case here, then people will not engage in much adaptation, and researchers will not find
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Figure 5: Isolating the Adjustment Cost Wedge for Firms
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substantial evidence for adaptation in the empirical record. Firms would want to engage in

adaptation in this case if better information was available or if shocks were highly persistent,

but high adjustment costs simply prevent them from taking action in many cases. Models

and empirical analyses that rule out ex ante adaptation are conducting analysis as if the

adjustment costs are infinite. The low κ case will be one with a high quantity of adaptation

and a low cost of adaptation. In this case, damages estimates that ignore ex ante adaptation

might miss a substantial part of the story. In between these two extremes, ex ante behavior

is important to take into account both in terms of the quantity and cost of adjustment.

The direct adjustment costs are only part of the adaptation cost story. Prior to the

arrival of rainfall, firms are also affected by changes in labor supply as well as spillovers

from sectoral linkages and trade. The complex interaction of these different factors can be

summarized by comparing the present value of profit for the firm at the time when rainfall

arrives (time t) versus at the time when news about rainfall arrives (t− `). The difference in

these values captures the effect on firms of the myriad ex ante adaptation actions engaged

in both by construction firms and by all other market participants. Figure 6 Panel 6a shows

this difference for the baseline calibration. The top line is the present value of profit when

rain arrives, and the bottom line is the present value of profit when news arrives. The vertical

difference between these two lines captures the total “cost” of actions taken before the rain

37



shock realizes.

Figure 6: Benefit and Cost of Adapting Given 1-month Change in Forecast Horizon
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Comparing two points along the blue line, one can also estimate the benefit of improving

the forecast horizon. As we discussed in the previous section, firms benefit more from

information available further in advance by spreading the adjustment over a longer period,

allowing them to engage in more adaptation at a lower cost. We refer to the difference

between two points along the top curve as the “marginal” benefit of forecasts because it is

the reduction in damage provided by a 1-month increase in the forecast horizon.

Finally, Panel 6b shows the marginal benefit of forecast horizon changes in the top curve

(red with hollow circles) and the marginal cost of adjustment in the bottom curve (blue with

filled circles). The marginal cost is the difference in costs between two forecast horizons, as

indicated on the x-axis. One can see that for all forecast horizons, the benefit of a 1-month

increase in forecast horizon is greater than the cost. In fact, due to spillovers across sectors

and changes in labor supply, marginal costs are actually negative for firms at the shortest

forecast horizons. Marginal benefit and cost converge for longer horizons. If firms were

able to choose their forecast horizon (and if forecasts were costless for them to produce),

they would choose a longer horizon than the longest we consider here. The model estimates

that firms currently pay 10% of typical monthly profit to adjust to a rainfall shock that is

anticipated only 1 month in advance. They pay more—13%—for adjusting to a 2-month-
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ahead forecast, but they also gain more in terms of reduced losses once rain arrives. For

longer horizon forecasts, they pay substantially less. When given 6 months advance notice,

firms pay only 0.5% of monthly profit to adjust.

5.4 Future climate projections

Unless greenhouse gas emissions are brought down substantially, future changes in the

climate are projected to increase the volatility of rainfall around the world. The most recent,

comprehensive climate projections under the high climate forcing scenario (CMIP6 SSP5-8.5)

indicate that the standard deviation of rainfall will rise 12%, on average, in the continental

U.S. between now and the end of the century (O’Neill et al., 2016). The rainfall distribution

is bounded below by zero, so this increase in volatility will lead to a higher probability of

heavier rainfall. Figure 7 shows rainfall volatility projections for every year between now

and 2100.39

Greater rainfall volatility will have two effects in our model. First, any shock—whether

positive or negative—will require costly adjustment to either avoid damages or to take ad-

vantage of benefits. For firms, these costs are the hiring wedge in Equation (10) and shown

in Figure 10. Second, there will be a higher probability of larger rainfall shocks conditional

on one occurring, and as discussed above, this is particularly salient for rainfall which is

bounded above 0.

The results in previous sections give the effects of a one standard deviation increase

in rainfall on employment, productivity, profit, and earnings. If the standard deviation of

rainfall increases from about 62 mm per month today to about 70 mm per month by 2100,

how will that affect the construction industry and labor market? Simply extrapolating from

our current estimates, holding everything else fixed, this will result in an additional loss in

value added for the construction sector from a typical rainstorm of 0.024 percentage points.

This magnitude might appear small, but we emphasize that is the loss, over-and-above losses

already incurred in the current climate, from routine month-to-month rainfall. Given a total

value added for the construction industry in the U.S. of roughly $1 trillion per year (BEA,

2019), an increase in losses of this magnitude could translate into tens of billions of dollars

of damage to the economy.

Our estimates are that profit for construction firms will change by a similar magnitude,

with firms losing around 0.01 percentage points more in present-value profit from a typical

rain storm. By comparing profit losses in the baseline scenario (shown in Figure 4) and

profit losses under projected climate change, we can estimate the change in forecast horizon

necessary for a firm to offset this impact.

39Figure A9 shows the projected standard deviation increase after residualizing on location and month-of-
year fixed effects. The growth in volatility is the same.
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Figure 7: Projected monthly rainfall standard deviation for the continental U.S.
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Profit losses get smaller as firms can plan further ahead. To gain enough flexibility to

avoid the projected extra profit loss, firms would forecasts to arrive just over half-a-month

further in advance. In other words, a firm that faced a 12% larger rainfall event would be

left no worse off it it was also given a half-month-further-ahead forecast. So one way to

think about the climate damages that we estimate is that firms would need to find a way to

increase their planning horizon by 50%, if they are currently planning one month ahead, in

order to offset the damage from a 1 standard deviation increase in rain.40

For longer baseline forecast horizons, the size of the increase falls. Figure 4 shows that

at longer horizons, firms are able to largely avoid profit losses, so smaller forecast horizon

increases are sufficient to avoid extra damages under projected climate change. Planning at

such long horizons is inherent challenging, however, so a small increase in forecast horizon

might still be hard to achieve. Figure A11 shows the forecast horizon improvement needed

to offset projected profit losses for each of the forecast horizons considered in the paper.

Long-range weather forecasting has been an area of focus for climatologists and mete-

orologists, particularly since the early 1990s. Some success has been achieved in forecasts

at a monthly or seasonal horizon. The use of ENSO signals to forecast seasonal rainfall

40In practice, our results indicate that firms are planning all the way out to a 6-month horizon, so this
comparison is just illustrative.

40



and temperature, which we exploit in this paper, is one of the clearest success stories. But

such forecasts are inherently difficult, and barring improvements to existing forecasts, more

careful attention by construction project managers, or other adaptations to reduce rigidity

in the labor market, the increased volatility projected by climate models will translated into

economic costs.41

Losses stemming from the interaction of labor adjustment costs and weather volatility

constitute damages from climate change that are, as far as we are aware, novel in the climate

economics literature. The damages do have an important antecedent in earlier work that

emphasized the role of capital and agricultural input adjustment costs in overall climate

damage (Quiggin and Horowitz, 2003, Kelly et al., 2005). The focus of that work, however,

differs from ours in an important way: they focus on the costs paid along the transition path

between equilibria while we focus on adjustment costs paid due to routine weather shocks.

Thus, one could distinguish between the “transition costs” pointed out by the previous

literature and the “adjustment costs” that we investigate. Adjustment costs and attendant

damages are important because they are paid routinely. Indeed, every time a weather shock

realizes the economy either pays adjustment costs or suffers damage from the change (even

if counterfactually from not adjusting to capture a gain from beneficial shocks).

6 Conclusion

Climate change is expected to cause substantial damage to the global economy. Our

understanding of that damage comes primarily from integrated assessment models (IAMs)

that estimate the equilibrium response to a change in the climate or from microeconometric

estimates of the acute effects of weather. Both of these sources overlook important dynamics.

In this paper, we identified two understudied aspects of the economics of climate change

where dynamics play an important role: labor market adjustment and the effects of rainfall

volatility. We focused on these issues in construction, an economically important, climate

exposed industry that has itself been largely overlooked by previous research.

We found evidence that construction labor markets respond sluggishly to forecasts of

rainfall shocks—an indication that market participants face adjustment costs. Empirically,

unexpected rainfall is associated with little change in construction employment. Rainfall that

can be anticipated well in advance, in contrast, leads to large changes in employment. Cali-

brating a multi-sector model labor market model, we found that the labor market responses

to forecastable rainfall imply large labor adjustment costs.

Adjustment costs are a source of climate damage, a reason for ex ante adaptation by

41Toth and Buizza (2019) summarize the history and possible future efforts to achieve gains in monthly,
seasonal, or even longer-horizon forecasts. More pessimistically, Scher and Messori (2019) have recently
argued that climate change might make rainfall forecasting even harder in the future.
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market participants, and a limit to the adaptation process. Given the adjustment costs we

estimate, weather shocks cause not only acute damage, but also involve substantial payment

for adaptation. Existing methods that estimate the effects of weather on economic outcomes

will miss this source of damage. Increases in weather volatility—which is already apparent in

the recent historical rainfall record and is projected to continue under unmitigated climate

change—will also imply higher climate damage due to more frequent or larger need for

adjustment. This source of damage is overlooked by IAMs. In our context, both of these

effects strengthen the case for public policy to reduce the emissions of climate pollutants.

For an individual firm facing a world of increasing climate volatility and costly adjust-

ment, we showed that implementing improvements to the hiring process that bring down

the cost of employment adjustment can substantially offset the negative effects of weather

variation. Firms can also take action to better incorporate longer-horizon information into

their decision-making. For construction firms that must make multi-month contracts based

on weather expectations, investing in innovations and process improvements that will allow

this type of planning will be of high value to improve flexible and resilience in the face of a

changing climate.
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A Supplementary figures and tables

Figure A1: Commuting Zones Where Construction Employment is Disclosed

Notes: The map shows commuting zones in the continental U.S. where construc-
tion employment is disclosed (white) versus suppressed (black) for all months in our
sample.
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Figure A2: ENSO Temperature Anomalies
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Notes: The figure shows monthly average temperature anomalies in the equatorial
Pacific Ocean as measured by the Niño 3.4 index. Gray bars are NBER recession
dates.

Figure A3: CZ-average rainfall and temperature over 1990 to 2016 period

(a) Pop. weighted precipitation (b) Pop. weighted avg. temperature

Panel (a) shows the time series average across the full sample (1990 to 2016) of population weighted monthly
total precipitation (in mm) in each commuting zone. Panel (b) shows the population-weighted average
temperature (in ◦C) for each commuting zone over the same period.
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Figure A4: Comparison of First-stage Coefficients: ` = 1 and ` = 6
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ahead predictions of the rainfall using ENSO. Example locations where the predictions
at the two horizons differ substantially are labelled. The dashed line is a 45◦ line.
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Figure A5: Main Results Using Rainy Days
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Notes: The figure shows coefficient estimates from Equation (2) for rainfall
predicted 1 to 6 months ahead. Predictions are based on CZ-specific responses
to changes in the ENSO. In our primary specification (see Table 2), the core
independent variable is the log number of millimeters of precipitation in the
month. In this specification, the core independent variable is instead the num-
ber of days in the month with positive precipitation.
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Figure A6: Effect of Rainfall Forecasts on Employment Prior to the Arrival of the Rain
Shock
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(d) h = 4
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(e) h = 5
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Notes: The figure shows coefficient estimates from Equation (2) for rainfall predicted 1 to 6 months ahead.
Predictions are based on CZ-specific responses to changes in the ENSO. The dependent variable is log
employment measured h months before the rain was forecast to arrive. The bars are 95% confidence intervals.
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B Model and Calibration

B.1 Calibration

Figure A7: Fit of AR(5) Rain Process to Estimate Persistence of Rain Shock

Notes: The figure shows coefficient estimates for the impact of news about
rain on realized rain by forecast horizon (blue lines), as well as the fit of an
AR(5) process to these estimates (dashed black line). The different colors
of the blue lines indicate the horizon of the forecast (1 to 6 months ahead),
with the darker colors indicating shorter horizons and lighter colors indicating
longer horizons. The estimates of the response of rain to the forecasts shows
the empirical persistence of rainfall in response to the news shocks we use for
identification. For calibrating the model, we minimize the distance between the
estimates (pooling across forecast horizons) and the prediction from an AR(5)
process, using standard errors as weights.

We use input-output tables from BEA and employment transition probabilities from the

CPS to calibrate the model at the 2-digit NAICS level. Rather than reporting the full tables,

we report aggregated values below to highlight the overall structure of the economy.
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Table A1: Calibration of Scale of Rainfall Shock: Effect of Surprise Rainfall on Quarterly
Earnings

Log wage bill

̂ln(Rain)
0

t -.038∗∗

(.018)

N 71,443

Notes: ** p < .05. Table dis-

plays the estimated elasticity

of compensation to surprise

rainfall at time t. The data

are quarterly aggregates of the

monthly QCEW data used to

estimate results in Table 2.

Standard errors clustered at

the CZ level are in parenthe-

ses. The regression includes

the 6-month-ahead forecast of

rainfall to isolate the sur-

prise component of rainfall,

time fixed effects, CZ fixed

effects, CZ-by-quarter-of-year

fixed effects, 1 year of lagged

rainfall, and 1 year of lagged

temperature.

Table A2: Calibration of Non-Sector-Specific Parameters

Parameter Value Source/Target

r 1.021/12 − 1 2% APR

β 1.02−1/12 2% APR
µS .171 Housing to consumption expenditure (BEA use IO table)
δS 0.00154 Housing investment to housing expenditure (BEA use IO table)
δK 0.00170 Capital investment to payments to capital (BEA use IO table)
s 0.066 Share of workers in same sector with a new employer (CPS)

Notes: Payments to capital are inferred as value added net of labor compensation.
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Table A3: Mapping of NAICS Codes to Aggregate Sector Names for Calibration Tables

NAICS Code Sector Name Aggregate Name

11 Agriculture Traded
21 Mining Traded
22 Utilities Services
23 Construction Construction
31-33 Manufacturing Traded
42 Wholesale Trade Services
44-45 Retail Trade Traded
48-49 Transportation and Warehousing Traded
51 Information Traded
52 Finance and Insurance Services
53 Real Estate Real Estate
54-55 Prof., Sci., and Tech. Services Services
56 Admin., Support, and Waste Management Services
61 Education Services
62 Healthcare and Social Assistance Services
71 Arts, Ent., and Rec. Services
72 Accommod. and Food Services Services
81 Other Non-Public Services Services

Notes: The table shows the mapping between 2-digit NAICS codes (and the
associated industry name in Column 2) and the aggregate sector name we use
for display in the calibration tables below. Note that the model is fit to the
disaggregated (2-digit sector-level) data but we report aggregated sectors for
legibility.

Table A4: Commodity Data and Calibrated Parameters

Share of
Total

Expenditure Shares Sector i’s Share of Revenue

µCj µSj µKj µGj Φij

Commodity Const. R.E. Serv. Traded

Construction 0.0616 0.0039 0.7709 0.1788 0.1015 0.9694 0.0012 0.0091 0.0204
Real Estate 0.0505 0.0207 0.1255 0.0032 0.0 0.0 0.883 0.018 0.099
Services 0.2339 0.4869 0.0143 0.0284 0.0 0.0 0.0012 0.984 0.0148
Traded 0.6539 0.481 0.0893 0.7896 0.1113 0.0002 0.0001 0.0052 0.9946
Government 0.0001 0.0076 0.0 0.0 0.7872 0.0 0.0 0.0 1.0

Notes: Data is from BEA final use table. NAICS codes associated with the listed sector names are
given in Table A3.
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Table A5: Sector Data and Calibrated Parameters

Share of
GDP

Labor
Share

Materials
Share

Commodity j’s Share of Materials

1− αi γi Γij/γi
Sector Const. R.E. Serv. Traded Gov’t

Construc-
tion

0.0603 0.635 0.483 0.0003 0.049 0.1453 0.8053 0.0

Real Estate 0.0386 0.2201 0.5609 0.0602 0.1657 0.2861 0.4837 0.0043
Services 0.29 0.6826 0.3674 0.0048 0.1424 0.1836 0.6538 0.0154
Traded 0.611 0.5777 0.5256 0.0061 0.0549 0.081 0.8504 0.0076

Notes: Data is from BEA final use and IO tables. The labor share refers to the share of value-
added paid to as labor compensation. Materials share refers to the share of materials costs in total
revenue. NAICS codes associated with the listed commodity/sector names are given in Table A3.

Table A6: Employment Statistics (Calibration target for ωii′)

Percent Transitioning to Sector
Sector Share of Total Non-Emp. Const. R.E. Serv. Traded

Non-Employment 0.14 0.7277 0.0252 0.0046 0.1483 0.0943
Construction 0.0597 0.0597 0.904 0.0014 0.011 0.0239
Real Estate 0.015 0.0448 0.0052 0.9148 0.0163 0.0189
Services 0.4101 0.0496 0.0017 0.0006 0.9329 0.0151
Traded 0.3752 0.0362 0.0038 0.0008 0.0156 0.9437

Notes: The second column reports total share of workers by sector (industries or non-
employment, CPS). The entries on the right show the share of these workers moving
from that sector to each other sector per month in the current population survey (CPS).
NAICS codes associated with the listed sector names are given in Table A3.
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C Additional Results Figures

Figure A8: Present Value of Profit and Labor Value When Rain Arrives
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(a) Present Value of Profit
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(b) Present Value of Earnings

Notes: The figure shows the present value of profit for firms (Panel A8a) and present value of earnings
for workers (Panel A8b) as a function of the forecast horizon and three different values of the firm-side
adjustment cost parameter, κ: high (red with hollow circles), baseline (blue with filled circles), and low
(gray with hollow squares) adjustment costs. All values are calculated at the time when the rain shock
arrives (time t in Equation (2)).
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D Climate Projections

Figure A9: Projected monthly rainfall standard deviation for the continental U.S.
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Panel (a) shows the projected standard deviation of monthly rainfall (in mm) each year from the present
until 2100 in CMIP6 SSP5-8.5 (O’Neill et al., 2016). Each point is calculated by taking the month-to-month
standard deviation of rainfall for each grid point in the CMIP6 projections then averaging those values
across the continental U.S. The raw standard deviation is debaised to match the sample average from our
estimation sample (by adding 2.04 to the projection values). Panel (b) shows the same standard deviations
but where the monthly rainfall in each grid point is first residualized on month, year, grid point, and climate
model fixed effects then the standard deviation is calculated.

E Model Robustness Checks
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Figure A10: Projected change in monthly rainfall standard deviation for the continental U.S.

The figure shows the projected growth in the standard deviation of monthly rainfall (in mm) each year from
the present until 2100 in CMIP6 SSP5-8.5 (O’Neill et al., 2016). Each line is indexed to 1 in 2015. The gray
lines are from different climate models in the CMIP database. The black line is the monthly average across
models.

Figure A11: Forecast horizon improvement needed to offset projected losses
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The figure shows the gain in forecasts needed to offset losses from the projected change in the standard
deviation of monthly rainfall caused by climate change (shown in Figure 7) in our baseline calibration. The
line is the horizontal distance between the baseline profit loss and the profit loss under the projected increase
in rainfall volatility as a function of forecast horizon.
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Table A7: Model Robustness Checks: Spillovers to Agriculture

Elasticity of Agriculture Productivity to Rain

` Baseline −.5ε̂ −ε̂ −2ε̂ ε̂

1 −0.005554 −0.005424 −0.005294 −0.005033 −0.005814
2 −0.009629 −0.009409 −0.009189 −0.008749 −0.010069
3 −0.013771 −0.013467 −0.013164 −0.012556 −0.014379
4 −0.017659 −0.017286 −0.016913 −0.016168 −0.018404
5 −0.021133 −0.020709 −0.020285 −0.019437 −0.021981
6 −0.024141 −0.023682 −0.023223 −0.022306 −0.025058

Notes: The values reported in the table are model predictions for
the elasticity of construction sector employment to anticipated rain
by length of forecast (` = 1, . . . , 6) while allowing rain to impact
productivity in agriculture, in addition to construction. The first
column shows when rain does not impact agriculture (corresponding
to the “baseline” values in Figure 3). The following columns show
predictions when we set the elasticity of agriculture productivity to
some multiple of our estimated elasticity for construction.

Table A8: Model Robustness Checks: Heterogeneity in κ

Heterogenous κ

` Baseline ∂ lnκi
∂ ln W̄i

= .1 ∂ lnκ
∂ ln W̄i

= 1 κi = 0 for i 6= Const.

1 −0.005554 −0.005552 −0.005536 −0.00564
2 −0.009629 −0.009626 −0.009593 −0.009781
3 −0.013771 −0.013767 −0.013714 −0.013984
4 −0.017659 −0.017652 −0.017579 −0.01792
5 −0.021133 −0.021125 −0.021033 −0.021426
6 −0.024141 −0.024131 −0.024022 −0.02445

Notes: The values reported in the table are model predictions for
the elasticity of construction sector employment to anticipated rain
by length of forecast (` = 1, . . . , 6) while introducing heterogeneity
in κ across industries. The first column shows the predictions when
κ is common across industries and equal to our estimate of 65.5
(corresponding to the “baseline” values in Figure 3). The following
columns show predictions after adding heterogeneity in κ across
industries (keeping the value in construction constant). The second
and third columns introduce heterogeneity by allowing κ to be a log-
linear function of steady state wages. The second sets the elasticity
of κ to wages to .1 (matching the estimate in Muehlemann and
Pfeifer (2016)), while the third increases this elasticity by an order
of magnitude to 1. The final column shows predictions when there
are no adjustment costs in industries other than construction.
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