NBER WORKING PAPER SERIES

A GUIDE TO CLIMATE DAMAGES

Derek Lemoine

(r)

Catherine Hausman

(r)

Jeffrey G. Shrader

Working Paper 34348 http://www.nber.org/papers/w34348

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 October 2025

Author order was randomized. A previous version of this paper circulated under the title "Welcome to Hell: A Guide to Climate Damages." This paper was prepared for the Journal of Economic Literature. We thank Laura Bakkensen, Robert Baluja, Lint Barrage, Raja Chakir, Olivier Deschenes, Peter Howard, Allan Hsiao, Andrew Hultgren, Ashley Langer, Kyle Meng, Fran Moore, Ishan Nath, Matt Neidell, William Nordhaus, Stan Reynolds, Michael Roberts, David Romer, Esteban Rossi-Hansberg, Ivan Rudik, Thomas Sterner, Jim Stock, Wint Thu, and various students at Arizona and Columbia for helpful feedback. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

At least one co-author has disclosed additional relationships of potential relevance for this research. Further information is available online at http://www.nber.org/papers/w34348

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2025 by Derek Lemoine © Catherine Hausman © Jeffrey G. Shrader. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

A Guide to Climate Damages
Derek Lemoine Catherine Hausman Deffrey G. Shrader
NBER Working Paper No. 34348
October 2025
JEL No. C23, C51, F18, O13, Q17, Q51, Q54, R11

ABSTRACT

Multiple lines of research aim to quantify the economic impacts of climate change, including through reduced-form and structural approaches. We show that the effects of climate change on economic activity depend on changes in weather across time and space: changes in contemporary weather have direct effects on output; changes in past weather and in expectations of future weather induce adaptation; and changes in weather elsewhere around the globe introduce a general equilibrium component. Using this framework, we argue that estimation of climate impacts faces a trilemma: a methodology can have at most two of (i) robustness to a particular economic model structure, (ii) interpretation as effects of persistent, widespread, anticipated climate change, and (iii) quasi-experimental identification. We summarize the literature on climate damages in light of the trilemma, with an emphasis on recent progress understanding adaptation and spatial spillovers. We propose directions for future work.

Derek Lemoine
University of Arizona
Department of Economics
and CEPR
and also NBER
dlemoine@email.arizona.edu

Jeffrey G. Shrader Columbia University jgs2103@columbia.edu

(r)

Catherine Hausman University of Michigan Gerald R. Ford School of Public Policy and NBER chausman@umich.edu

(r)

1 Introduction

The economics of climate change is a problem from hell.

- Martin Weitzman, Review of Environmental Economics and Policy (2015)

The climate is rapidly changing due to emissions of greenhouse gases. Climate change destabilizes important physical inputs to the economy, creates global systemic risks, and alters the geographic scope of human activity. Global surface temperatures have risen "faster since 1970 than in any other 50-year period over at least the last 2000 years" (IPCC, 2023, p. 4). Global average temperature set a new record in 2024 by exceeding 1.5°C (2.7°F) relative to 1880–1900 (Figure 1). Accumulated greenhouse gas emissions also cause the seas to rise, precipitation patterns to change, and oceans to acidify, while exacerbating damages from extreme events like hurricanes and wildfires (Hsiang and Kopp, 2018; IPCC, 2021, 2023). These changes already impact the economy, and recent syntheses estimate indicate they will continue to do so, with 3°C of warming relative to pre-industrial global average temperature persistently lowering future GDP by around 2% (Barrage and Nordhaus, 2024) or even 7–13% (Howard and Sterner, 2025).

The many unknowns, complex interlinkages, and high stakes make climate change an economic "problem from hell" (Weitzman, 2015, p. 145). Among the many research questions, understanding the economic damages from climate change is of central importance, as it links scientific insights to policy design and evaluation. Estimates of damages inform both the stringency of actual climate policies and what policies economists recommend for implementation. Damage functions are a core component of cost-benefit integrated assessment models (IAMs), which mathematically represent the relationships between the economy and the climate (Kelly and Kolstad, 1999; Nordhaus, 2013; Dietz, 2024). Similar models are used by academics and policymakers to calculate the social cost of carbon (SCC) (Dietz, 2024), a focal point for economic analyses and an input to policy analyses. The SCC is the present value of the stream of damages caused by the emission of one additional ton of carbon dioxide. Damage estimates are the critical piece of the SCC: no damages, no SCC. Damage estimates also inform the emerging legal framework of "loss and damage," which considers how emitters might compensate parties harmed by climate change (UNFCCC, 2012).

The large and growing literature on climate damages uses a variety of conceptual frameworks, modeling choices, and data. Over time, the pendulum has swung between explicit structural modeling and a variety of applied econometric methods, each approach a response to perceived shortcomings of earlier work. Early studies developed simulation models of agricultural impacts. Seeking a more direct link to empirical data, subsequent literature regressed outcomes on long-run

¹Although some regions may experience net benefits over some timescales, we use the term "damages" because there is widespread consensus that aggregate global impacts in both the short- and long-term are negative (Howard and Sylvan, 2020).

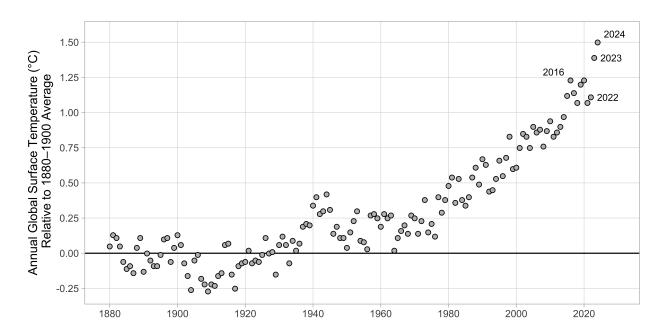


Figure 1: Global Average Surface Temperatures

Note: This figure shows annual global surface temperatures relative to the period from 1880 to 1900. Data source: Lenssen et al. (2024); GISTEMP Team (2025).

average temperature within a cross-section of countries or counties. Seeking identification in the modern causal sense, recent literature regressed outcomes on realized weather within a panel of countries or other regions.² And the pendulum swings back, seeking counterfactuals more faithful to climate change: a recent strand of literature builds dynamic spatial models that rely on theoretical contributions from the trade and macro literatures.

Why are there so many different approaches? We aim to shed light on what different strands of the literature—and individual papers from those strands—can contribute as well as the limitations they each face. We begin with a simplified model of climate change that is *widespread*, *persistent*, and *anticipated*. We model a two-region world economy experiencing ongoing climate change and expecting climate change to continue. We decompose the effects of climate change on output and on welfare into individual terms that we map into the literature. Some are obvious: local weather may have direct and immediate effects on productivity (e.g., heat waves may hurt agricultural production). Others are more nuanced: current capital stocks depend on how agents responded to past changes in weather and to anticipated future changes in weather. And some of the terms involve cross-region spillovers: trade adjusts for direct damages from weather in each region and

²Throughout, we use "climate" to indicate the distribution of variables such as temperature and precipitation and "weather" to indicate realizations of those variables.

for the evolution of capital stocks in each region.

We next discuss methods researchers have used to study these effects. Our focus is not so much on the details of estimation (e.g., which fixed effects to include in a panel regression) but rather on conceptual questions raised by idealized versions of each method. We propose three desiderata: we want methods that are informative about widespread, persistent, anticipated climate change; robust to the particularities of an economic model's structure; and well-identified in the econometric sense of potentially recovering unique, causal relationships from data. We argue that, though they each get at some aspect of the problem, no single approach yet satisfies all three. Cross-sectional regression methods tend to be subject to omitted variables bias, and their counterfactual calculations capture only local changes in climate; panel regression methods capture weather changes that are localized, one-off, and potentially surprising rather than widespread, persistent, and anticipated; and structural methods require imposing a variety of particular model restrictions that are hard to test. The proliferation of papers using varying methods is a reasonable response to that tension and is likely to continue. It is imperative that these varied approaches speak to one another and ground-truth one another.

The conceptual challenges we describe are related to challenges in other areas of economics (e.g., Heckman, 2000; Angrist and Pischke, 2010; Deaton, 2010; Einav and Levin, 2010; Mahoney, 2022), but they may be especially important here given the centuries-long and global nature of climate change. The conceptual challenges have not gone unnoticed by climate economists: debates about the relative merits of various methods of estimating climate impacts are decades old (e.g., Cline, 1996; Tol, 2009; Dell, Jones and Olken, 2014; Massetti and Mendelsohn, 2018; Kolstad and Moore, 2020). We argue that these debates recur because they are inherent to the enterprise, a result of the many channels through which climate change impacts the economy and of the trilemma we have proposed.

We review the recent literature in light of our model and our discussion of methodological approaches, beginning roughly where Dell, Jones and Olken (2014) left off. We divide papers into three broad categories guided by the insights from our model: causal reduced-form estimates of direct damages, papers investigating the scope for adaptation, and spatial papers examining cross-region spillovers. In the direct damages strand, data-driven efforts have led to tremendous advances. These take causal identification seriously, offer granularity across impact categories, and allow for heterogeneity across space. Earlier IAMs were criticized for outdated or unrealistic damage estimates (Greenstone, 2021), but recent IAMs have incorporated updated damage estimates (Rennert et al., 2022; EPA, 2023; Barrage and Nordhaus, 2024).

Unfortunately, the recent causal estimates struggle to incorporate adaptation, including via trade and other general equilibrium effects. Adaptation—the set of actions people and society take to respond to climate change—determines the total damage from climate change both by affecting the

damages people experience and by being costly in its own right. Trade and general equilibrium effects determine how global climate change will affect the economy and how effects in climate-exposed sectors spill over to other sectors. Recent work on dynamic adjustment and on spatial spillovers aims to advance understanding of these topics by placing more structure on the problem, albeit at the cost of diminishing the robustness to model structure attainable through reduced-form methods.

We conclude with a discussion of next steps, offering some specific suggestions for future research. We discuss what the broad research agenda might look like in an environment of imperfectly known—and even imperfectly knowable—damages. We argue that there will always be room for multiple methodological approaches, and we propose that there are gains from pursuing hybrid methods and using some methods to test the assumptions imposed by others.

2 Stylized Model of Climate Change Damages

E'en hell hath its peculiar laws.

- Johann Wolfgang von Goethe, Faust

To organize ideas, we develop a model of climate change damages that highlights the essential challenges of estimating climate impacts. To capture the global, *widespread* nature of climate change, we model multiple regions; to capture the *persistent* nature of climate change, we model past periods in which the climate could already have changed; and to capture the *anticipated* nature of climate change, we model future periods for which agents can expect a change in the climate to persist.

We formalize the model and derive the effects of marginal climate change in the appendix.³ Here we outline some key elements. Each of two regions, labeled A and B, produces a consumption good and acts like a price-taker in the global market for its good. A representative consumer in each region has utility for both goods, which motivates regions to trade with each other. Production Y_t^j in region j at time t is determined by weather w_t^j and two stylized inputs. A first input, ℓ_{Yt}^j , is a labor input that can be flexibly allocated to production or investment. A second input, K_t^j , is a predetermined capital stock, which comprises physical, resource, and knowledge stocks. Neither input is mobile across regions.

We map global, expected climate to local, realized weather in the following way. Weather in region j and period t is $w_t^j = \theta_j C + \tilde{w}_t^j$. C indexes the global climate, with θ_j scaling a

³We keep the setting minimal, but it could be extended to include features such as migration, weather-exposed capital stocks (including weather-driven depreciation), imperfectly competitive markets, constraints on adaptation, direct valuation of either climate or climate-exposed environmental stocks, climate affecting higher moments of the distribution of weather, or learning about climate change.

change in global climate to a change in region j's climate. \tilde{w}_t^j is a mean-zero random variable that reflects stochasticity in weather. The joint distribution of \tilde{w}_t^j and \tilde{w}_t^k is independent and identically distributed over time and independent of C.

We do so for simplicity, to emphasize the persistent nature of climate change, and to match the empirical exercise in many papers that compares current-day climate to the climate at some distant future date. (Modeling climate change more realistically would not alter the basic points we make below about channels for climate change effects.) The difference in C between the two worlds generates *widespread* climate change because it alters weather in every region, generates *persistent* climate change because it alters the history of weather leading up to a given period, and generates *anticipated* climate change because agents understand that it alters the distribution of future weather.

Much empirical work considers the effects of climate change on output, and the damage functions central to integrated assessment models have indeed tied output to temperature. Within our model, the effect of climate change on region A's output is

$$\frac{\mathrm{d}Y_t^A}{\mathrm{d}C} = \underbrace{\frac{\partial Y_t^A}{\partial w_t^A} \theta_A}_{\text{direct damages}} + \underbrace{\frac{\partial Y_t^A}{\partial \ell_{Yt}^A} \frac{\mathrm{d}\ell_{Yt}^A}{\mathrm{d}C}}_{\text{new adaptation}} + \underbrace{\frac{\partial Y_t^A}{\partial K_t^A} \frac{\mathrm{d}K_t^A}{\mathrm{d}C}}_{\text{prior adaptation}}.$$
 (1)

We delineate three ways in which climate change affects output. The first is the direct damage from altered contemporary weather: weather is an input to production, and a change in that input can have first-order consequences on production. Direct damages have been the focus of extensive empirical research, as reviewed in Section 4.1. One example is that increased heat waves can reduce agricultural yields. The second is the response of flexible, endogenous inputs (such as labor) to climate change. One example is that a farmer can change the timing of their planting. Such responses are forms of adaptation. Recent empirical research has prioritized a better understanding of adaptation, as reviewed in Section 4.2. The third is how prior adaptation to climate change has altered today's capital stock. One example is that farmers may have dug new wells in prior periods, whether anticipating climate change or in response to prior climate change. These responses have been subject to much less empirical research.

The appendix shows that the new adaptation term combines responses to four different manifestations of climate change. First, climate change alters contemporary local weather. The change in contemporary local weather may directly alter the marginal product of labor; may alter the value of labor's marginal product by directly affecting the scale of local output and prices; and may alter expectations of later prices—and thus the incentives to allocate labor to investment—by affecting investment decisions in the other region *B*. Together, these responses to contemporary, local changes in weather reflect *ex post adaptation to a temporary change in local weather*.

Second, climate change affects contemporary expectations of future local weather. These expectations may alter the anticipated marginal product of capital in future periods and thereby affect local investment incentives. In addition, investment in the other region may depend on expectations of local weather in this first region, and investment in this first region may respond to investment in the other region. These responses to expected, local changes in weather reflect *ex ante adaptation to an anticipated change in local climate*.

Third, climate change is a process that may have been unspooling for quite a long while prior to any given time t. Climate change will then have altered local weather in prior periods. Those earlier changes in weather can affect the time t capital stock. The appendix shows that the effects of climate change on the time t capital stock ($\mathrm{d}K_t^A/\mathrm{d}C$) comprise the effects of climate change on investment in all earlier periods. As a result, the capital stock contains a memory of adaptation ($\mathrm{d}\ell_{Yt}^A/\mathrm{d}C$) in those earlier periods, and thus of changes in all earlier periods' weather and of changes in all earlier periods' expectations of subsequent weather. The change in the time t capital stock therefore mixes ex post and ex ante adaptation that occurred prior to time t. The altered capital stock drives the prior adaptation term in equation (1). In addition, the altered capital stock drives part of the new adaptation term in equation (1): the altered capital stock may affect the time t marginal product of labor, the value of that marginal product, and the expected marginal product of capital in later periods, both directly and via altered investment in region B. Both the direct capital response and the local adaptation response it causes are responses to past changes in realized and expected weather terms, which include adaptation to prior changes in local climate and to prior changes in expectations of local climate.

Finally, climate change also affects weather elsewhere around the world (see Section 4.3). These changes form part of both the new and prior adaptation terms in equation (1). These changes in nonlocal weather have temporal dimensions mirroring the foregoing discussion of changes in present, projected, and past local weather: current changes in weather elsewhere on the planet affect local prices; anticipated changes in weather elsewhere on the planet affect local investment incentives; past changes in weather elsewhere around the planet affect capital stocks elsewhere around the planet and thereby affect local prices and local investment incentives; and all such changes can affect investment incentives elsewhere around the world and thereby affect local investment incentives. These responses to present, projected, and past changes in other regions' weather reflect adaptation to changes in other regions' climates.

We have thus far considered the effects of climate change on output, which in turn required considering the effects of climate change on fixed and variable factors of production. Ultimately, however, we are interested in effects on welfare which are important for policy, albeit more difficult to observe empirically. There are multiple measures of welfare that might be of interest:

1. The first-order change in the non-bequest welfare of agents alive at a given time in a particular

location depends, per the appendix, on how climate change affects local production (as in equation (1)) and on how climate change affects prices, which in turn depends on how climate change affects production everywhere around the world. As a result, effects on period welfare depend on all of the effects discussed following equation (1), for all regions at once.

- 2. The first-order change in the welfare of present and future agents living in a particular location is in some ways more straightforward, because the envelope theorem applies. In particular, the local component to the new adaptation channel from equation (1) drops out, as current and future allocations to production and investment are optimized for local intertemporal value. However, the appendix shows that effects on two types of inputs remain. First, climate effects are history dependent. Time t capital stocks are predetermined as of time t, so the effects of climate change on those capital stocks do not drop out of time t intertemporal value. Second, other regions optimize their inputs for their own intertemporal value, so effects on inputs elsewhere around the world can have first-order effects on local intertemporal value, via trade.
- 3. The first-order change in the welfare of all agents, in both locations and in both the present and future, can be even simpler. If global markets are competitive and fully integrated, then the equilibrium allocation maximizes a global intertemporal welfare function with particular weights on each region and time period. If the global social welfare function has these same weights, then, by the envelope theorem, the adaptation channel from equation (1) in every region of the world drops out of the marginal effect of climate change on global social welfare. However, the capital response does remain, because capital stocks are predetermined as of time *t* rather than optimized at time *t*. So past adaptation does affect intertemporal welfare. Moreover, if either the social welfare function uses different weights or global markets have imperfections, then the envelope theorem does not apply and the adaptation channels from equation (1) are part of the effect of climate change on social welfare.

More generally, moving from impacts to damages requires aggregating welfare across space (distributional weighting), across time (discounting or broader notions of intergenerational justice), across goods (valuing health and non-market environmental goods), across states of nature (accounting for risk, uncertainty, and the chance of catastrophe), and across dimensions of weather (including temperature, precipitation, sea level rise, and storms).⁵

 $^{^4}$ One might wonder why optimization in earlier periods does not mean that marginal changes in the time t capital stock have no effect on time t intertemporal welfare. The reason is that, by standard dynamic analysis, the shadow value of a state variable such as capital obeys a costate equation that does not generally set it to zero.

⁵Prior surveys of these issues, which often go beyond the scope of this paper, cover inequality over space (Drupp et al., 2025; Kelleher, 2025); discounting (Dasgupta, 2008; Heal, 2009*a*; Gollier, 2013; Heal, 2017; Millner and Heal, 2023); nonmarket goods (Bastien-Olvera and Moore, 2022); and risk, uncertainty, and catastrophes (Pindyck, 2007;

In sum, recovering the effects of climate change on variables of economic interest within our stylized framework requires recovering the effects of climate change on (i) productivity; (ii) the value of that productivity; (iii) current capital stocks via past realized weather and past expectations of weather; (iv) current investment, via current expectations of weather; and (v) trade, which transmits the effects of climate change on weather and expectations in other regions. The combination of all these effects encompasses ex post and ex ante adaptation, in the present period and in prior periods, and in the region of interest as well as in other regions connected to it by trade networks.

Each of the terms delineated above is likely to be nonzero in practice, but some may be relatively small in particular applications. We do not expect that any one empirical paper will nail down every one of these terms. Instead, we propose that a major goal for empirical work should be to establish which terms are likely to be important in which settings. And we propose that each piece of empirical work should be clear about which terms it captures and which terms it excludes and thus to what extent it captures the full effect of climate change. Being clear about which terms are excluded and included is sometimes tricky: as we discuss below, many empirical papers that appear to be estimating only direct damages may in practice be estimating combinations of direct damages with other terms. Taking a stronger stand on whether or not, for instance, estimated effects are truly net of adaptation will better facilitate integration of those effects into policy frameworks.

3 Methodological Choices: The Climate Impacts Trilemma

Almost every natural man that hears of hell, flatters himself that he shall escape it...

— Jonathan Edwards, Sinners in the Hands of an Angry God

Projecting climate change damages requires economists to causally link the distribution of temperature and other climate variables to outcomes in nature and society. We discuss prominent approaches through the lens of a trilemma: researchers desire methods that

- (A) are robust to economic model structure;
- (B) can be interpreted as the effect of widespread, persistent, anticipated climate change; and
- (C) are econometrically well-identified.

We argue that researchers must accept the possibility of nonrobustness to economic model structure, of mismatch with climate variation, or of econometric confounding.

Figure 2 illustrates the trilemma. It locates six prominent papers from different eras of climate impact estimation within a triangle whose vertices correspond to the three desiderata. A paper

Weitzman, 2007; Pindyck, 2013; Heal and Millner, 2014; Heal, 2017; Lemoine and Rudik, 2017; Jensen and Traeger, 2024).

that is closer to a given vertex does a better job, in our view, of achieving that desideratum. The appendix details why we locate papers where we do.

Early work, typified here by Adams et al. (1988), adopted structural approaches that focused on capturing the widespread nature of climate change and some aspects of the persistence of climate change but were not identified in the modern econometric sense and relied on the assumptions embedded in a particular economic model. Subsequent papers, typified here by Mendelsohn, Nordhaus and Shaw (1994), adopted reduced-form cross-sectional methods that increased robustness to the particulars of the underlying economic model but gave up capturing the widespread nature of climate change and could not fully address omitted variables concerns fundamental to econometric identification. The next wave of papers, typified here by Schlenker and Roberts (2009), adopted reduced-form panel methods that emphasized econometric identification but, relative to cross-sectional methods, gave up capturing the persistent, anticipated nature of climate change.

More recent work has responded to the inability of reduced-form panel methods to capture the widespread, persistent, anticipated nature of climate change. Attempting to capture adaptation in response to persistent climate change, Carleton et al. (2022) explored cross-sectional heterogeneity in panel responses, thereby reintroducing omitted variables concerns in identification. Cruz and Rossi-Hansberg (2024) pulled back on model robustness in favor of better capturing the widespread, persistent nature of climate change. They devoted special attention to dynamics missing in some early structural work. Most recently, Bilal and Känzig (2024) implemented time series methods. These methods are analogous to cross-sectional methods in pulling back on panel identification in order to better capture important aspects of climate change, but whereas cross-sectional methods aimed to capture the persistent nature of climate change, these time series methods aimed to capture the widespread nature of climate change.

We next discuss each of these approaches in more detail.⁶ To fix ideas, consider a researcher with data on output y_{it} and weather w_{it} in locations i and periods $t \in \{0, ..., T_0\}$. Each method below proposes different ways of using these data to project dy_{iT_1}/dC , where $T_1 > T_0$.

3.1 Cross-Sectional Methods

A first line of inquiry compares outcomes across locations with different climates (e.g., Mendelsohn, Nordhaus and Shaw, 1994; Nordhaus, 2006; Dell, Jones and Olken, 2009; Albouy et al., 2016), estimating regressions along the lines of:

$$\bar{y}_i = \beta^{cs} \bar{w}_i + \gamma X_i + \varepsilon_i, \tag{2}$$

⁶We leave aside expert elicitation papers, such as Pindyck (2019) and Moore et al. (2024). These can provide a valuable way of quantifying and aggregating damages, but they remain subject to the trilemma to the extent that experts' views may be informed by the kinds of empirical papers we discuss.

(B) Captures widespread persistent, anticipated climate change (B) Schlenker and Roberts Mendelsohn, Nordhaus Adams et al. (1988) and Shaw (1994) (2009)(A) Robust to economic model structure (C) (C) (B) (B) Cruz and Rossi-Hansberg (2024) Bilal and Kanzig (2024) Carleton et al. (2022)

Figure 2: The Climate Impacts Trilemma

Note: This figure visualizes the trilemma described in the main text: at most, researchers have fully achieved two of the three desiderata represented by the corners of this triangle. For six papers that use very different empirical approaches, we plot our subjective assessment of their weakest and strongest points related to the three desiderata. The Online Appendix contains verbal descriptions of our assessments.

(A)

(C)

(A)

(C)

(A)

with \bar{y}_i and \bar{w}_i indicating averages over time of y_{it} and w_{it} , X_i indicating a vector of covariates, and ε_i indicating an error term. If the error term is uncorrelated with the right-hand side variables, the estimated $\hat{\beta}^{cs}$ captures how changing average weather affects average output.⁷

When applying estimates of β^{cs} to climate change counterfactuals, the researcher implicitly changes historical weather in a given location while holding climates in all other locations fixed. These cross-sectional methods are robust to different models of how a change in local climate affects outcomes. These methods therefore can in principle satisfy desideratum (A).

Cross-sectional methods only partly satisfy desideratum (B). They permit counterfactuals that are clearly interpretable as changes in steady-state local climate.⁸ However, to interpret these counterfactuals as changes in global climate, one must assume away all of the trade terms in equation (A-9) (see Gouel, 2025). These methods therefore require particular assumptions if their counterfactuals are to capture the effect of a global change in climate.⁹

⁷Many notable papers in this literature are "hedonic" or "Ricardian" studies, which estimate effects on forward-looking metrics such as land value rather than output (e.g., Mendelsohn, Nordhaus and Shaw, 1994; Schlenker, Hanemann and Fisher, 2005; Severen, Costello and Deschênes, 2018). For reviews of Ricardian approaches, see Mendelsohn and Dinar (2009), De Salvo, Begalli and Signorello (2014), and Prakash et al. (2024).

⁸With one caveat: cross-sectional comparisons implicitly modify expectations of future weather, but people living with climate change may form expectations differently than people did in the past.

⁹An additional limitation to satisfying desideratum (B) is that timescales can matter: Dell, Jones and Olken (2014) argue that the estimated effects from a cross-sectional regression may be too long-run to be relevant to near-term

Moreover, cross-sectional methods generate well-known econometric concerns and thus do not satisfy desideratum (C). First, climate is not randomly assigned around the planet, so comparing climates across locations does not constitute a natural experiment. As many papers point out, omitted variables that are correlated with climate are always a concern, no matter how many controls are included in X_i (e.g., Darwin, 1999; Hanemann, 2000; Schlenker, Hanemann and Fisher, 2005; Deschênes and Greenstone, 2007).

Second, the stable unit treatment value assumption (SUTVA) is unlikely to hold. Neighboring locations generally have correlated climates and contain suppliers, customers, and competitors for each other. Changes in one location's climate are therefore correlated with changes in nearby locations that affect the first location. This raises questions of not just interpretation but also of bias: by treating the neighboring locations as "control" units, the impact on the "treated" location is estimated with bias (e.g., Deschenes and Meng, 2018). And as with bias from omitted variables, a SUTVA violation could generate bias that is either positive or negative.

Third, climate change is already happening, and therefore is part of the sample researchers work with. For instance, land values should reflect climate change, both already realized and imminent. Severen, Costello and Deschênes (2018) show that cross-sectional estimates of the relationship between land prices and historical climate may not be appropriate for use in climate counterfactuals. Similar issues can apply to other outcome variables.

In sum, cross-sectional methods target the effects of climate change in the absence of flows across space via trade or migration, and they do so without imposing further theoretical restrictions, but they suffer on the econometric identification front and they miss the widespread nature of climate change. If we could sign the econometric bias in a given application of cross-sectional methods and also sign the bias from ignoring flows across space, then we might use cross-sectional methods to bound the effect of climate change, but these biases unfortunately tend to be of ambiguous sign.

3.2 Panel Methods

Reacting to econometric concerns with cross-sectional estimators, much of the literature in the last decade-plus has adopted methods that estimate the effects of varying a location's weather over time (e.g., Schlenker and Roberts, 2006; Deschênes and Greenstone, 2007; Dell, Jones and Olken, 2012; Fisher et al., 2012). These studies typically estimate panel fixed effects regressions:

$$y_{it} = \beta^{panel} w_{it} + \delta_i + \nu_t + \varepsilon_{it}, \tag{3}$$

with δ_i a unit fixed effect to account for time-constant unobservables, ν_t a time fixed effect to account for common shocks across space, and ε_{it} an error term.

climate change.

Rather than estimating the relationship between average weather and average output over space, this regression estimates the relationship between weather and output within units over time. It aims to isolate causal effects by looking at variation in weather that is unusual for a location and, when including time fixed effects, for a time period. The appeal of panel methods is that they are potentially well-identified, as high-frequency weather is potentially exogenously assigned. And panel methods identify the effects of weather without imposing a fully specified economic model of how weather affects the economy. They therefore aim to satisfy desiderata (A) and (C) when it comes to the effects of local weather.

Yet identification can still be a challenge in practice. For instance, time-varying confounders within a unit may cause omitted variables bias (Fisher et al., 2012; Blanc and Schlenker, 2017; Hogan and Schlenker, 2024). Including finer fixed effects or trends may better control for unobservable confounders, but measurement error may attenuate estimates more severely when useful variation is removed through fixed effects and trends (e.g., Arellano, 2003). Researchers therefore face trade-offs in their choice of specification and controls, as mitigating the potential for time-varying confounders risks increasing the fraction of residual variation comprised of measurement error (Auffhammer and Schlenker, 2014; Blanc and Schlenker, 2017; Hogan and Schlenker, 2024).

In addition, weather anomalies are correlated over space (Auffhammer et al., 2013) and time. Following the above discussion of SUTVA violations in cross-sectional methods, the spatial correlation of weather anomalies potentially introduces a bias of unknown sign.¹⁰

But the primary challenge for panel methods arises in connecting the coefficients from panel regressions to widespread, persistent, anticipated climate change (desideratum (B)). Since example regression (3) does not control for how factor inputs respond to weather, the estimated $\hat{\beta}^{panel}$ captures, in the framework of Section 2,

$$\frac{\mathrm{d}Y_{t}^{A}}{\mathrm{d}w_{t}^{A}} = \underbrace{\frac{\partial Y_{t}^{A}}{\partial w_{t}^{A}}}_{\mathrm{direct}} + \underbrace{\frac{\partial Y_{t}^{A}}{\partial \ell_{Yt}^{A}}}_{\mathrm{short-run, myopic}} \cdot \underbrace{\frac{\partial Y_{t}^{A}}{\partial w_{t}^{A}}}_{\mathrm{short-run, myopic}}. \tag{4}$$

Comparing to equation (1) and the appendix's equation (A-9), the estimated effect includes the direct damages from weather on output and also the effect on inputs through current weather. By focusing on localized unusual weather, panel methods include adaptation that is short-run and myopic but miss the effect of climate change on past weather, on expectations of weather, and on weather in other locations (see equation (A-9)).¹¹ Indeed, omitting such adaptation is an oft-discussed drawback of panel methods (e.g., Deschênes and Greenstone, 2007; Dell, Jones and

¹⁰See Zappala (2024) for recent work focused on SUTVA and Rudik et al. (2022) for a demonstration of that bias.

¹¹See Shrader (2023) and Lemoine (2023) on using weather forecast data to capture effects of expectations of future weather in panel regressions.

Olken, 2014; Massetti and Mendelsohn, 2018; Kolstad and Moore, 2020; Hogan and Schlenker, 2024). And panel methods do not typically estimate how climate alters output via changes to the incoming capital stock in equation (1). That is, the panel estimator reflects a localized, one-off, and potentially surprising weather change rather than the widespread, persistent, and anticipated change in weather produced by climate change.

To some, omitting much adaptation is a virtue of panel methods: an optimizing agent equates the marginal benefits and marginal costs of adaptation, so adaptation drops out of the full effect of climate change on an optimized object by an envelope theorem argument (for more on this argument, see Hsiang, 2016; Mérel, Paroissien and Gammans, 2024). However, it is important that the researcher make clear what the optimization problem is. Otherwise, the envelope theorem argument can be misapplied in practice, as when the left-hand side variable is a choice variable such as agricultural yields or an intermediate object such as revenue or flow profit rather than an *optimized* object such as the present value of expected profits. In addition, the choice variable needs to be continuous and unconstrained, which is not the case in many applications (Guo and Costello, 2013).

More generally, as shown in Section 2, the envelope theorem will not justify reducing the effect of climate change on output to equation (4) in a model with a future, a past, and regions interacting through trade. In that case, panel methods do not satisfy desideratum (B). A one-off, surprising, and localized weather event differs from climate change in many of the ways that make climate change a hard problem. It is the *persistence* of climate change that makes it potentially so costly while also potentially making adaptation so critical, it is the *anticipated* nature of climate change that is the motivation for current policy, and it is the globally *widespread* nature of climate change that makes trade and migration complicated. To extrapolate panel estimates of altered output or adaptation choices to climate change, we have to assume that these three aspects of climate change are jointly small.

Recent work has turned to "long difference" methods in an attempt to escape the trilemma. Here the timestep of a panel regression is on the order of one to three decades rather than on the order of a day or year (e.g., Dell, Jones and Olken, 2012; Burke and Emerick, 2016). The goal is to isolate variation due to climate trends. This work generally finds that long difference estimates are, in practice, similar to standard panel estimates (Dell, Jones and Olken, 2012; Burke and Emerick, 2016). This result could reflect a lack of adaptation to longer-run climate trends over and above adaptation to short-run weather shocks, the hypothesis favored by much of the literature. However, the similarity between these estimates is also consistent with another hypothesis. Long differencing does not eliminate the type of weather variation used in conventional panel estimates: at least some part—and frequently the bulk, or even all—of the identifying variation is based on what weather

¹²Repeat-Ricardian models (e.g. Bareille and Chakir, 2023) are conceptually similar.

happened to be in the first interval and final interval used to construct the difference, apart from any climate change that may have happened. The similarity of the two estimates may then merely reflect that the similar underlying weather variation dominates any medium-run variation in climate trends (Lemoine, 2023).¹³ In addition, the long-run variation in temperatures may be driven by latitudinal differences or otherwise correlated with regional patterns and may thus carry omitted variables bias (Kolstad and Moore, 2020; Hogan and Schlenker, 2024).¹⁴

In sum, panel methods focus on obtaining well-identified estimates of weather impacts without imposing theoretical restrictions, although identification can be more complicated in practice. From these methods, we learn which types of weather variables are likely to be important channels for climate change. But to interpret their estimates in terms of climate change can require assuming away capital and resource stocks and assuming away flows across space via trade and migration.

3.3 Mixed Panel/Cross-Sectional Methods

Some work mixes panel and cross-sectional methods (e.g., Butler and Huybers, 2013; Auffhammer, 2022; Carleton et al., 2022; Hultgren et al., 2025), estimating regressions of the form:

$$y_{it} = \beta^{panel} w_{it} + \gamma^{cs,panel} \bar{w}_i w_{it} + \delta_i + \nu_t + \varepsilon_{it}.$$
 (5)

This regression extends the benchmark panel regression (3) to include the interaction between a location's average weather and its weather shocks. This regression approach mitigates concerns about omitted variables bias relative to cross-sectional methods by considering only the cross-sectional component of panel variation, but it does not totally eliminate omitted variable concerns (Mendelsohn, 2019; Kolstad and Moore, 2020; Hogan and Schlenker, 2024). As an example of this critique, Schlenker, Roberts and Lobell (2013) suggest that the reduced sensitivity of agriculture to heat in hotter locations may actually reflect differences in humidity.

The main question is whether we can mitigate the limitations of panel methods with respect to desideratum (B) by bringing in both the estimated $\hat{\beta}^{panel}$ and $\hat{\gamma}^{cs,panel}$. Identification to the side, the literature sometimes interprets the difference in the effects of weather between hotter and colder locations as evidence of adaptation. Phrased another way, the question is whether $\hat{\gamma}^{cs,panel}$ includes the terms in equation (1) that are missing from $\hat{\beta}^{panel}$ in equation (4), thereby making the experiment more comparable to that targeted by cross-sectional methods and to the actual effects of climate change.

¹³Finding stable estimates across varied estimation windows could still be consistent with short-run variation dominating long-run variation.

¹⁴This may be true even with fixed effects. If, for instance, the fixed effects are at the state level, then the residual variation is driven more by geographically larger states that retain substantial within-state variation in latitude and other factors.

Formally, the estimated $\hat{\gamma}^{cs,panel}$ from regression (5) is the cross-derivative of output with respect to weather and climate. $\hat{\gamma}^{cs,panel}$ therefore describes heterogeneity in the marginal effect of a one-off, surprising, localized shock changes. Such information may be useful when projecting consequences of nonmarginal climate change (e.g., Carleton et al., 2022; Hultgren et al., 2025). However, this cross-derivative is not part of the missing adaptation terms from equation (1), which are formally derived in the appendix (see equation (A-9)). For instance, panel methods miss how past responses to weather and current responses to anticipated weather affect labor, capital, and output today. The formal expressions for these terms are not cross-derivatives of anything in equation (4) with respect to C.

Intuitively, the idea behind regression (5) is that long-run average weather captures adaptation that an agent makes with respect to their climate. The interaction with realized weather is then intended to capture how the effect of a local weather shock is altered by adaptation. The problem is that there are adaptation responses to climate change that impact output (or welfare) regardless of their mediating impact on current weather responses. For instance, imagine that climate change only mattered by affecting capital stocks. In that case, $\hat{\beta}^{panel}$ and $\hat{\gamma}^{cs,panel}$ would both be zero because contemporary weather would have no immediate effect on production, but climate change would still eventually matter for production via the accumulation of capital consequences (as in equation (A-10)).

As another example, Schlenker, Roberts and Lobell (2013) imagine a case where agricultural yields are exactly zero in hot counties. Then the effect of heat on yields would be zero in those counties, which in equation (5) would suggest a high degree of adaptation. If we applied that zero marginal effect of heat to cold counties as they warm over time, then it would appear that adaptation would completely offset any negative effect of climate change. However, we would be missing the action in the fixed effects, which are also zero in hot countries. These would, if they were identified, suggest that climate change would in fact *eliminate* yields in cold counties. In both examples, regression (5) suggests no effects of climate change yet real-world effects may be quite large.

3.4 Time Series Methods

A few papers have relied on time series variation, putting global temperature (or other aggregated temperature) on the right-hand side of a regression equation (Bansal and Ochoa, 2011; Bansal, Kiku and Ochoa, 2016; Bilal and Känzig, 2024; Müller et al., 2025). This approach estimates a reduced-form relationship between global temperature variation and production and can thus satisfy desideratum (A).

The time series approach is the mirror image of the cross-sectional approach: whereas the cross-sectional approach aims to capture long-run effects by risking spatially-varying confounds,

the time series approach aims to capture effects of nonlocal weather by risking time-varying confounds, whether common or unit-specific. And it does so with fairly limited data (60 years in Bilal and Känzig, 2024). One challenge for identification is isolating the component of global temperature changes that are true *shocks*. To do this, one must believe that the time series method (such as a filter) reflects how agents really do form expectations over future weather. If these methods do successfully isolate shocks, then they do not attain desideratum (B), as they do not match the phenomenon of persistent and anticipated global climate change. But if these methods do not successfully isolate shocks, then they do not attain desideratum (C), as they are not identified in the econometric sense.

3.5 Structural Methods

Many of the first attempts at estimating damages were structural models of agricultural production, which could include trade and long-run adaptation (e.g., Adams et al., 1988; Easterling et al., 1993; Rosenzweig and Iglesias, 1994). Some recent work attempts to capture the spatial structure of climate change by directly modeling trade and migration flows (see Desmet and Rossi-Hansberg (2024) and Section 4.3). Other recent work attempts to capture the temporal structure of climate change by directly modeling adaptation investments (e.g., Fried, 2022; Hsiao, 2023; Balboni, 2025). In each case, a study specifies a model $M(w_{it}, C; \beta^{struct})$ that describes how something in the economy responds to weather or to expectations of weather. This model may be a system of equations or an optimization problem. It contains specific functional forms that are parameterized by a vector β^{struct} . The model implies a response function:

$$y_{it} = m\left(w_{it}, C; \beta^{struct}\right).$$

The parameters β^{struct} may be calibrated to data, drawn from theory, or estimated by fitting model output to moments of the data.

In principle, a properly specified and well-calibrated model yields a response function $m(\cdot,\cdot)$ that captures all of the channels derived in Section 2. Moreover, this method is capable of going beyond the local analysis of Section 2 to model the process of transitioning from one climate to another. Because the counterfactual construction is directly under the modeler's control, it can satisfy desideratum (B), although in practice many models do abstract from temporal or spatial effects. And the estimation might be done in an econometrically sophisticated way that attempts to satisfy desideratum (C), although in practice many parameters are assumed or calibrated rather than estimated and the identification challenges familiar from other methods arise here too.

However, these methods suffer on desideratum (A). They are only as good as the structural assumptions made about how economic outcomes respond to weather. We saw above that we

would have to make strong assumptions about flows across space and about capital stocks to project climate impacts from cross-sectional or panel methods. Such projections therefore do impose a particular type of model behind the scenes, and that model might be restrictive or even unrealistic (trade and capital stocks are clearly important in the real world!). Paraphrasing and adapting Kleven (2021), cross-sectional and panel estimates of climate impacts are in fact "structural", in the sense of requiring theoretical restrictions in order to be interpretable in terms of climate change. Fully structural methods have the advantage of making their model assumptions explicit. However, structural models have to make many particular modeling choices. It can be difficult to evaluate the robustness of their conclusions to a broad class of alternate models. In contrast, cross-sectional and panel methods estimate the response function directly and thus are potentially robust to a broad set of underlying models.

In sum, structural methods can attempt counterfactuals beyond the reach of the other methods but are hard to verify as robust to a particular model structure. This trade-off is familiar within economics (Chetty, 2009; Acemoglu, 2010; Leamer, 2010; Nakamura and Steinsson, 2018). The natural experiment used in reduced-form research (weather shocks) is not externally valid for the question of policy interest (about climate change). Imposing more structure can allow for construction of counterfactuals better resembling persistent, widespread, anticipated climate change—but at the cost of stronger assumptions on functional form and potentially weaker identification of causal effects. Estimates from natural experiments and structural approaches can therefore complement each other. Progress could be made in using moments in empirical data to discriminate among the models used to simulate climate impacts.

3.6 Structurally-Motivated Reduced-Form Methods

Some recent work attempts to combine the econometric identification and model robustness of panel methods with the advantages of structural methods for evaluating counterfactuals. These hybrid approaches specify an economic model but do not specify every functional form within that model. They impose enough theoretical restrictions to derive policy terms that are estimable from microeconomic empirical methods but impose few enough such restrictions that the results remain compatible with a set of structural models. These approaches are in the spirit of sufficient statistics approaches in the public economics literature (Chetty, 2009; Kleven, 2021).¹⁵

Rudik et al. (2022) use migration choices to identify how intertemporal value changes with the climate. Migration is a forward-looking activity that reveals agents' assessments of intertemporal value in different regions. Using an envelope theorem argument, Rudik et al. (2022) show that

¹⁵Some have used envelope theorem arguments to justify using panel methods to obtain sufficient statistics for climate change impacts, but these arguments often start from restricted economic environments. The methods considered in this section start from more general environments, analogously to Kleven (2021).

when migration is optimized, the responses of migration shares to temperature shocks identify the effect of climate change on intertemporal value. They use these reduced-form estimates to validate their structural model, which imposes stronger restrictions on the economic environment.

Lemoine (2023) considers the effects of climate change on outcomes that are not subject to the envelope theorem. This paper aims to analytically derive the true effect of climate change within a dynamic environment, analytically derive the effects captured by coefficients from panel methods, and bound the true effect of climate change from functions of those estimated coefficients. Through this method, an empirical researcher recovers estimates of dynamic adaptation channels from a reduced-form regression.

Relative to structural methods, the researcher gives up some experimental control, as they are limited to counterfactuals attainable with panel methods' coefficients, but the researcher does gain a degree of model robustness and potentially improved identification. Relative to panel methods, the researcher gives up robustness to the whole class of models that all satisfy the same restrictions on spatial flows and capital stocks but gains the ability to loosen some of those restrictions and thereby speak more directly to the effects of climate change. In the future, these hybrid methods may be used as a check on whether persistence or spatial flows are important, and differences with structural methods may indicate when functional form assumptions are important.

3.7 Summary

We have seen that no one method has threaded the needle between being able to demonstrate robustness to the particulars of an economic model's structure, being able to capture the widespread, persistent, and anticipated nature of climate change, and being identified by data in the econometric sense. We argue that this trilemma is inescapable. Researchers must either try to extract the most comparable counterfactuals they can from the data they have or must build a model to construct the counterfactual. In terms of individual desiderata, Figure 2 shows that papers have had the hardest time capturing all of the temporal and spatial dimensions of climate change (desideratum (B)). The way in which climate change affects all sectors, locations, and time periods is one of the reasons it is "a problem from hell." Early work tried to capture some of these dimensions of climate change without much focus on identification, work in the 2000s and 2010s emphasized identification at the cost of interpretability in terms of climate impacts, and recent work has attempted to blend identification with the economic forces that motivated early work. We believe that the recent increase in methodological diversity is healthy for the field and look forward to increased cross-fertilization and cross-checking across methodological approaches.

4 Evidence on Channels for Climate Damages

The conceptual model in Section 2 and the analysis in the appendix show that the effects of climate change manifest through multiple channels: the direct damages from changes in local weather; agents' adaptation responses to past, present, and expected changes in local weather; and adaptation to changes in other locations' weather that spill over through trade or other spatial flows. Section 3 describes various methods used to identify some or all of these channels, highlighting the tradeoffs associated with each approach. We now review the literature on each of these three broad channels. Many of these papers span multiple channels, so the goal is not to pigeonhole papers, but rather to clarify how various strands relate to our theoretical model, in the context of the methodological challenges we have highlighted.

4.1 Direct Damages

I heard many things in hell.

- Edgar Allen Poe, The Tell-Tale Heart

Much of the existing literature aims to study the immediate and direct damages from weather on economic outcomes. In principle, this aims to recover $\partial Y_t^A/\partial w_t^A$ —for instance, the impact of weather on GDP or on sectoral output—as from the right-hand side of equation (1). We begin with the example of agricultural outcomes, typically measured via yields (i.e., output conditional on land inputs). We also review a closely related literature that examines the effects of weather on other measures of economic activity, in some cases reflecting productivity and in some cases reflecting a mix of output effects and adaptation actions.

Multiple excellent reviews have summarized the state of knowledge on direct damages (Dell, Jones and Olken, 2014; Carleton and Hsiang, 2016; National Academies of Sciences, Engineering, and Medicine, 2017; Auffhammer, 2018; IPCC, 2023). In their review, Carleton and Greenstone (2022) identify over 400 empirical studies published between 2010 and 2021. We do not comprehensively review the entire literature. Rather, we highlight key innovations in the estimation of these effects, and we discuss how, in some cases, identifying direct damages is inextricably linked to identifying adaptation and spillovers.

4.1.1 The Causal Revolution Comes to Climate Economics

Since the Dell, Jones and Olken (2014) review, progress has been made estimating the immediate and direct damages from weather on output using causal methods. This literature has applied methods and frameworks from the causal identification revolution that swept through applied

microeconomics (Angrist and Pischke, 2010), here with the goal of deriving plausibly causal damage estimates using more comprehensive data and modern computing.

A rich literature that clearly aims to estimate direct damages is the one on climate impacts on the agricultural sector (Ortiz-Bobea, 2021; Bezner Kerr et al., 2022). We begin our review with that sector both because of the importance of climate impacts on agriculture and because of the way it exemplifies many important issues.

In an influential paper, Schlenker and Roberts (2009) leverage weather shocks in a fixed effects framework to estimate the impact of changes in temperature exposure across growing seasons on rainfed U.S. agricultural yields. (A reviewer pointed out that a closely related statistical analysis of the nonlinear effects of temperature on corn yields (Wallace, 1920) was conducted over a century ago.) Schlenker and Roberts (2009) analyze effects on corn, soybean, and cotton yields. A key insight—and a running theme through much of the subsequent literature—is that the impacts of weather shocks are nonlinear. Up to a point, warmer weather improves crop yields. But very hot temperatures cause yields to decline steeply. The paper projects the effects of climate change by predicting changes in yields from the combination of the estimated temperature-yield relationship and warmer weather distributions. It projects severe U.S. crop yield declines under global warming because the relatively large, negative effect of more frequent hot temperatures outweighs the modest gain in yields from less frequent cold temperatures. Schlenker and Roberts (2009) presaged many of the debates that would follow: they qualitatively discuss—but do not estimate—the effect of adaptation, of other atmospheric variables like precipitation and CO₂ (for crop fertilization), and of price changes and other spillovers, as well as related consequences for food security.

The Schlenker and Roberts (2009) approach has spurred a number of papers on other crops, other regions, and other time periods. For instance, Schlenker and Lobell (2010) investigate yield impacts for five staple crops in Africa, again finding qualitatively important negative effects of heat shocks. Ortiz-Bobea et al. (2021) examine aggregate food production—for both crops and livestock—globally. One innovation in this paper's approach is modeling the impact on the growth rate of agricultural productivity. The authors attribute a slowdown in agricultural productivity growth over the last several decades to the impact of global warming. They estimate the greatest impacts in Africa, the Near East and North Africa, and Latin American and the Caribbean.

4.1.2 Parallels in Other Outcomes

Agriculture is not the only sector of the economy impacted by climate change. A robust literature attempts to generate estimates of other impacts. Outcomes considered in this literature include energy use, labor productivity, climate amenities, capital costs, morbidity, mortality, and conflict. These outcomes do not correspond directly to output effects $(\partial Y_t^A/\partial w_t^A)$ —in fact, changes to energy and healthcare use are adaptation effects—but they do illuminate mechanisms by which sectoral

or aggregate output could be impacted in direct and immediate ways. We discuss these papers as part of the direct damages literature in line with how they have tended to situate themselves, before turning to a more comprehensive review of the adaptation literature.

Estimates for energy use or expenditures were, along with agricultural impacts, some of the earliest causally-identified impact estimates. Like the agricultural papers, much of this research shows U-shaped effects: going from very cold to moderately cold temperatures would bring benefits (in the form of reduced expenditures on heating), but beyond a threshold—in this case driven by ideal temperatures for human comfort—damages would be incurred because of increased expenditures on cooling. This nonlinearity implies that the direct effects of temperature on wellbeing are context-specific. They vary not only in magnitude but in sign, depending on a region's baseline temperature, on the region's mix of heating and cooling technologies, and on the time horizon of warming projections used. Davis and Gertler (2015), Auffhammer, Baylis and Hausman (2017), and Li, Pizer and Wu (2019) show that in countries as varied as Mexico, the U.S., and China, electricity expenditures are expected to rise with global warming because of increased air conditioning needs, but Wenz, Levermann and Auffhammer (2017) project decreases in electricity demand in Northern Europe. Rode et al. (2021) provide global estimates that account not only for electricity for space cooling and heating but also other fuels used for space heating. They project that energy expenditures will fall over the next century under either moderate- or high-emission scenarios, with electricity use increasing in most countries but outweighed by reduced consumption of other fuels (and with even reduced electricity use in a few northern countries).

A number of papers estimate labor market effects. This work originates with Graff Zivin and Neidell (2014), who estimate the effect of temperature on labor supply. Additional literatures have estimated effects on human capital accumulation (Graff Zivin, Hsiang and Neidell, 2018; Park et al., 2020; Park, Behrer and Goodman, 2021) and on productivity or earnings (Behrer et al., 2021; Somanathan et al., 2021). These papers generally find that heat stress lowers labor supply, labor productivity, and exam performance. Like the agricultural, energy, and mortality outcomes, labor productivity and learning may exhibit nonlinear effects, with damages increasing beyond 18 or so degrees Celsius (65 degrees Fahrenheit). A focus of much of this literature has been on distributional effects, with greater vulnerabilities for students in school districts without air conditioning and for outdoor workers. These results are consistent with inequality in the ability to adapt to heat and potentially in the ability to adapt to climate change, topics we return to below.

Some outcomes are more closely related to welfare effects, such as pleasure associated with climate amenities. Albouy et al. (2016) use a hedonic framework to show that prime-aged U.S. households on average favor a daily average temperature of 18 degrees Celsius (65 degrees Fahrenheit) and that this preference shows up in their willingness to pay to live in warmer areas. Sinha, Caulkins and Cropper (2018) conduct a similar cross-sectional analysis within a static discrete

choice framework that allows for moving costs. They find that U.S. households who tend to prefer milder winters also tend to prefer milder summers. Sinha, Caulkins and Cropper (2021) compare the hedonic and discrete choice approaches.

A finance literature parallels this direct damages line of research. Among other topics (see Giglio, Kelly and Stroebel, 2021), this literature considers how physical climate risks may differentially affect the cost of capital (e.g., Anttila-Hughes, 2016; Acharya et al., 2022), the riskiness of debt (e.g., Painter, 2020; Huynh and Xia, 2021; Nguyen et al., 2022; Goldsmith-Pinkham et al., 2023), or the value of coastal real estate (e.g., Bernstein, Gustafson and Lewis, 2019; Baldauf, Garlappi and Yannelis, 2020; Keys and Mulder, 2020; Bakkensen and Barrage, 2022).

4.1.3 A Recent Focus on Mortality

Since the Dell, Jones and Olken (2014) review, there has been an increased emphasis on mortality effects, which can be one of the largest contributors to total damages and which may carry special ethical significance.

Hot and cold weather both impact mortality. The increase in heat-related mortality around most of the world is projected to outweigh the decrease in mortality expected in cold climates, leading to an overall increase in global mortality under projected climate change (Carleton et al., 2022). The Carleton et al. (2022) analysis is notable for its massive data collection (covering nearly 40 percent of the world's population) and its monetization of mortality impacts along with adaptation costs (see Section 4.2.2). Even more global data would be helpful for future analyses: lower-income countries and Southern hemisphere countries tend to be missing, with nearly all of Africa missing. The authors project a large impact of climate change on mortality by the end of the century, valued at three percent of GDP in 2100. The authors also document spatial heterogeneity, as they project warming to lead to many more deaths in some countries than in others, based on how the temperature-mortality relationship varies with countries' climates and incomes. A limitation of the analysis is that it is unable to explore specific mechanisms: it leverages vital statistics data from many countries around the world, but these do not always have harmonized covariates.

Other papers have investigated mechanisms. Potential mechanisms for mortality effects include heat stress, disease, crime and conflict, suicides, and agricultural losses affecting subsistence or income. (We discuss mechanisms for offsetting those effects below when we review the adaptation literature.) Hsiang, Burke and Miguel (2013) and Burke, Hsiang and Miguel (2015a) summarize the literature on weather effects on crime and conflict, showing increases in both interpersonal crime and civil war with high temperature shocks. Some potential mechanisms are physiological: heat can increase aggression. Other potential mechanisms relate to income loss. Carleton (2017) and Burke et al. (2018) estimate effects of heat on suicide. Carleton (2017) finds that effects in India are driven by heat shocks during the growing season, consistent with weather-related shocks

to agricultural income.

Morbidity is more challenging to study comprehensively because of the large number of non-fatal health outcomes that could potentially be affected. A large epidemiology literature studies morbidity from extreme heat (Bell, Gasparrini and Benjamin, 2024; Zhou et al., 2025). Economics papers estimating morbidity impacts include studies of hospital admissions (White, 2017; Karlsson and Ziebarth, 2018) and on-the-job injuries (Dillender, 2021). As with mortality, warming in some cases is projected to reduce morbidity. For instance, cold weather-induced illnesses may decrease, or temperatures may move away from the ideal temperature for malaria-carrying mosquitoes, although potentially becoming more suitable in other locations (IPCC, 2022).

4.1.4 Effects on Aggregate GDP

We have thus far focused on the direct damages from weather in individual sectors, reflecting the focus of the bulk of the literature. However a smaller set of papers estimates the effects of temperature shocks directly on economic aggregates, such as national GDP (e.g., Dell, Jones and Olken, 2012; Burke, Hsiang and Miguel, 2015b; Newell, Prest and Sexton, 2021) or regional output and income (e.g., Deryugina and Hsiang, 2017; Colacito, Hoffmann and Phan, 2019; Kalkuhl and Wenz, 2020; Barker, 2022; Lemoine, 2023, 2025). As with disaggregated impacts, these papers tend to find U-shaped relationships that imply benefits in some places but costs at the global level. However these effects are estimated with much less precision than many of the disaggregated impacts and may not be robust to empirical choices (Newell, Prest and Sexton, 2021).

The literature has made progress on fundamental questions about whether effects on the level of GDP or on the growth rate of GDP are more plausible (Pindyck, 2013; Newell, Prest and Sexton, 2021). The answer to this question is crucial: projecting impacts over the next 100 years can yield very different damage estimates depending on whether impacts are permanent, persistent, or neither. Kahn et al. (2021) use a stochastic growth model to derive an estimating equation that nests level and growth effects. Using low-frequency variation in temperature and reduced-form methods, Bastien-Olvera, Granella and Moore (2022) report evidence that effects of temperature shocks persist for at least a decade. Using an extended Solow growth model, Casey, Fried and Goode (2023) show that capital dynamics complicate interpreting regressions of output on temperature as evidence for either growth or level effects and that regressions using total factor productivity can better distinguish between level and growth effects. Implementing this regression, they find evidence of level effects (see also Harding et al., 2023). Nath, Ramey and Klenow (2024) use a model to derive a dynamic estimating equation, which they estimate using local projections. They find that effects of warming are persistent even if not permanent.

4.1.5 Moving Forward With Direct Damages Estimation

Future empirical work could consider multiple dimensions of weather simultaneously and could seek empirically grounded estimates of non-weather impacts, such as from ocean acidification (see Doney et al., 2009), although temperature is a dimension along which scientists have especially strong consensus about future changes. Existing work in economics that goes beyond temperature and sea level rise includes work on precipitation (e.g., Damania, Desbureaux and Zaveri, 2020; Palagi et al., 2022; Kotz, Levermann and Wenz, 2022; Hultgren et al., 2025), including implications for irrigation (Adams et al., 1988); the interaction between temperature and humidity (e.g., Barreca, 2012; Wilson et al., 2024); the role of tropical cyclones (Bakkensen and Barrage, 2025; Ferreira, 2024); the role of soil moisture (Proctor et al., 2022); and the effect of a wide variety of climate variables on agriculture, including wind, humidity, evaporation, and CO₂ fertilization (e.g., Zhang, Zhang and Chen, 2017; Toreti et al., 2020).

In summary, much progress has been made establishing that weather matters directly for many important outcomes, including output and productivity in key sectors like agriculture as well as health and mortality. The bulk of these papers have implied much higher direct damages from climate change than was previously believed. A missing component, though, is that these papers are generally unable to address the potential importance of adaptation effects and general equilibrium effects. Moreover, these papers may even be mixing up adaptation and spatial spillovers with direct damages: the interpretation of a coefficient on, for instance, current temperature is complicated by the possibility that realized temperature correlates with drivers of adaptation such as forecasted or prior local temperature (Shrader, 2023; Lemoine, 2023) and with direct damages in other locations and sectors that spill over through trade and production networks (Rudik et al., 2022; Zappala, 2024; Lemoine, 2025). We next turn to emerging literatures on adaptation and spatial spillovers.

4.2 Adaptation

But in hell the torments cannot be overcome by habit.

- James Joyce, A Portrait of the Artist as a Young Man

Consider again a central challenge facing us when estimating climate change damage: green-house gas emissions today cause changes to the climate that manifest within a decade and are essentially permanent from the perspective of economic decision making. To fully understand damages, therefore, we need to know not only how the climate affects the economy today but also how those effects will change over the very long run. This implies all sorts of economic questions.

¹⁶When considering general equilibrium effects induced by changes elsewhere around the world, note that even non-market outcomes—such as mortality—could be affected by weather elsewhere, because inputs are traded (although this has not yet been shown to be a quantitatively important point).

How much time will people spend in versus out of doors if the world is 3°C hotter? Will those indoor spaces be air conditioned? How will technological change, structural change, or other aspects of economic growth affect our sensitivity to the climate? How can policy hasten or hinder these changes? Seeking answers to all of these questions is the purview of the study of climate change adaptation.

Adaptation is contingent on all of the things that affect our ability and willingness to act, including the costs and benefits of that action, beliefs, the availability of technology, and constraints. Despite a handful of existing reviews specifically on adaptation (Fankhauser, 2010, 2017; Massetti and Mendelsohn, 2018; IPCC, 2022; Carleton et al., 2024), and despite years of calls for more research on adaptation (Fisher and Hanemann, 1993; Mendelsohn, Nordhaus and Shaw, 1994; Hanemann, 2000; Burke et al., 2016), there are still many open questions in this area. Like Carleton et al. (2024), we divide these questions broadly by their policy import: how does adaptation affect the amount of damage from climate change and therefore the optimal mitigation path, and how can policy affect adaptation? Before turning to the challenges and progress on these two questions, we first clarify what is and is not climate adaptation.

4.2.1 Defining Adaptation

There are many definitions of "adaptation" to be found in the literature. As the model in Section 2 formalizes, we use adaptation to refer to actions that are taken in response to realized or anticipated changes in the climate. These actions can involve short-run responses, as denoted by the $\mathrm{d}\ell_{Yt}^A/\mathrm{d}C$ term from equation (1), and can show up in long-run investments, captured by the $\mathrm{d}K_t^A/\mathrm{d}C$ term from equation (1).

This definition of adaptation excludes actions that are *not* taken in response to changes in the climate. Many argue that societies will become less exposed to climate as they grow richer, making climate change less of a problem over the coming centuries (e.g., Ausubel, 1991; Schelling, 1992). For example, households are likely to adopt air conditioning both because of a change in the climate and as incomes grow (Davis and Gertler, 2015). We call the former effect "adaptation" and consider it part of the effect of climate change (and thus a function of today's emission decisions), and we call the latter effect an exogenous change in damages and consider it part of the background we must project when analyzing climate change (Carleton et al., 2024). Some studies estimate the sensitivity of the economy to temperature changes over time or space (e.g., Turner et al., 2012; Bleakley and Hong, 2017; Heutel, Miller and Molitor, 2021; Carleton et al., 2022; Burke et al., 2024). These studies can be important for determining that there is scope for adaptation and, under the assumption that the historical changes in sensitivity are caused by repeatable adaptations or other trends, for constructing projections of climate damages in the distant future. However, the detected changes need not themselves reflect adaptation, as they could be due to variation in

non-climate factors.

Our definition does broadly capture *anything* an agent does to adjust to a changing climate. This leaves many actions to consider. Thinking just about the decisions a farmer might make to adapt to a hotter climate, they could make longer-term investments such as purchasing and learning to grow heat-resistant seed varieties; they could take short-term actions like changing the frequency of watering, pest control, or weeding; or they could engage in myriad other activities. It would be a daunting task to understand *all* of these adaptation actions, but for the goal of studying how adaptation affects damages (and therefore optimal mitigation policy), one does not need to delineate each of these individual actions. Instead, one needs to know how much damage is left over after people adapt and also the aggregate costs of adaptation.

4.2.2 Understanding Adaptation to Project Damages

To project future damages and determine the appropriate stringency of mitigation policy, we need to estimate how evolving adaptation will affect damage. This effort is complicated by the interplay of the two. Expected future damages should alter the incentive of agents to adapt, in turn affecting the amount of realized damage (Kahn, 2015). Because of the challenges involved, climate change damage projections in the literature often do not explicitly represent adaptation (Nordhaus, 1992; Schlenker and Roberts, 2009).

Research has made progress on identifying and characterizing adaptation actions. Some work explicitly links changes in behavior to weather variation, using that link to infer behavioral change under climate change. Examples of these actions include time use (Graff Zivin and Neidell, 2014), employment (Downey, Lind and Shrader, 2023), use of healthcare (Mullins and White, 2020), and migration (Missirian and Schlenker, 2017). Other work examines changes to the economy that have had the effect of changing our sensitivity to the climate, without explicitly decomposing those changes into adaptation per se versus exogenous changes. Examples include Barreca et al. (2016), who examine air conditioning adoption; Rising and Devineni (2020), who examine crop switching; and Sloat et al. (2020), who examine farm relocation. A third set of papers seeks to characterize adaptation benefits and costs, without specifying the individual actions. As discussed above, understanding the overall costs and benefits is an important goal. Examples include Carleton et al. (2022) and Shrader, Bakkensen and Lemoine (2023) on mortality, and Hultgren et al. (2025) on agriculture. Finally, structural models that include adaptation actions have been used to assess both the effectiveness and cost of adaptation, albeit needing to specify the set of adaptation options (e.g. Bareille and Chakir, 2024).

Much of the work cited above studies responses, whether short-run or long-run, to short-run weather shocks. All such responses are part of overall adaptation, but responses to longer-run changes in weather are also needed to provide a complete picture. Lemoine (2023) shows that the

bias from ignoring long-run adaptation depends on whether actions are intertemporal substitutes (as when accessing depletable resources) or intertemporal complements (as under adjustment costs). A classic example is irrigation for agriculture (Auffhammer and Schlenker, 2014; Blanc and Schlenker, 2017). In the short run, greater irrigation can help farmers maintain production through a drought. But if climate change makes dry conditions occur with greater frequency, water for irrigation might run out, removing irrigation as an available adaptation action. In this depletable resource case, short-run adaptation estimates *overstate* the amount of adaptation in the long run. The reverse can also be true. In the face of adjustment costs, agents will generally adapt more to a permanent shock compared to a temporary shock. Short-run adaptation estimates may then *understate* the amount of adaptation in the long run. In the irrigation example, agents may install new irrigation systems or drill deeper wells when they either experience or anticipate experiencing regularly hot, dry conditions (for empirical work in agriculture, see Hornbeck and Keskin, 2014; Hagerty, 2022). Determining how much adaptation is of the depletable resource type versus the adjustment cost type is important for projecting future climate damages.

Researchers have made more progress studying adaptation in the context of persistent, anticipated changes in the probability of extreme events. When climate change makes these events more likely, adaptation can include investing in resilience. Fried (2022) and Bakkensen and Barrage (2025) study how households adapt to storm risk. The former models how households and firms invest in adaptation capital such as a seawall that mitigates damage from a storm and analyzes the interaction between adaptation investment and disaster aid policies. The latter demonstrate that greater storm risk increases precautionary savings and, potentially, growth in between storms, even as realized storm strikes destroy capital. The effects of climate change on storm risk encompass both channels, whereas cross-sectional and panel regressions tend to emphasize one or the other. Firms can also increase resilience to extreme weather by diversifying the locations of their plants (Castro-Vincenzi, 2024), by diversifying their supply chains (Balboni, Boehm and Waseem, 2024; Castro-Vincenzi et al., 2024; Pankratz and Schiller, 2024), by establishing bank credit lines (Brown, Gustafson and Ivanov, 2021), and by using financial derivatives tied to weather outcomes (Pérez-González and Yun, 2013). However, even where firms allocate capital efficiently ex ante, extreme weather can make capital inefficiently distributed ex post (Liu and Xu, 2025).

Directed technical change in response to climate change is also a form of long-run adaptation. For projections of climate change damage over hundreds of years, such adaptation is likely to be especially important. But it is also especially hard to investigate using any single empirical approach. Plant breeders and farmers have been able to adapt to substantially different geographic climates, but this adaptation takes time (Olmstead and Rhode, 2008, 2011), at least with breeding techniques available in the past. Moscona and Sastry (2023) show that recent U.S. crop breeding efforts have been directed towards crops that have been more exposed to extreme heat. These crop

innovations are a form of adaptation. The model in Moscona and Sastry (2023) indicates that this adaptation does substantially reduce the effects of climate change on U.S. agriculture. Future work could consider tradeoffs between traits that enable climate adaptation and other traits and how these tradeoffs interact with farmers' preferences over the mean and variance of yields (Gollin, 2011).

Beyond the responses discussed above, there are further nuances: (1) climate change affects volatility in both weather and climate; (2) potential tipping points raise questions about the scope and speed of adaptation; and (3) history dependence of economic systems may constrain or facilitate adaptation.

An agent facing risk or ambiguity from climate change may invest in shorter-lived capital stocks or may invest in resilience to a wide variety of potential different climates (Fankhauser, Smith and Tol, 1999). Such decisions can be affected by the expectation of having forecasts before extreme events occur (Millner and Heyen, 2021). For instance, more accurate forecasts of weather and seasonal climate can reduce risk and facilitate shorter-run adaptation (Shrader, 2023; Downey, Lind and Shrader, 2023; Burlig et al., 2024). Financial markets can also be important tools through which agents achieve financial resilience: investors may choose their portfolios so as to financially hedge climate risks (Engle et al., 2020), homeowners may choose mortgages that implicitly insure them against sea level risks (Bakkensen, Phan and Wong, 2025), and countries may use disaster insurance to help them rebuild capital stocks after natural disasters and may use catastrophe bonds to reduce borrowing costs that were elevated by disaster risk (Phan and Schwartzman, 2024).

Climate change also has the potential to trigger large changes in the earth system via tipping points, causing large or catastrophic damages and raising questions about the efficacy of different adaptation strategies. A small literature has studied damages from tipping points in simulation models. In some papers, tipping points cause exogenously specified damages that do not depend on adaptation (e.g, Cai, Lenton and Lontzek, 2016; Cai and Lontzek, 2019). In other papers, the damages induced by triggering a tipping point emerge endogenously from changes in the earth system and economic reactions to them. Some of these papers model the process of tipping, varying in whether policy is optimized using that knowledge (e.g., Nordhaus, 2019b) or whether that process is taken as exogenous (e.g., Dietz et al., 2021). In other of these papers, the tipping process is a stylized switch in the dynamics of the climate system, with the focus on uncertainty and learning about that switch (e.g., Lemoine and Traeger, 2014, 2016). Adaptation is possible both in advance of happening to flip the switch and in reaction to having flipped it. The potential need for large adjustments to the capital stock in response to having crossed a tipping point may make early warning signals—and ex-ante adaptation based on them—especially important.

The final nuance introduced by the dynamic nature of adaptation is in the way past responses to weather can constrain or facilitate actions taken in the present and future (the prior adaptation term in Section 2). The history of local weather can affect the local capital stock both through ex post

adaptation and through local beliefs about climate change—although these effects may not have yet added much to the effects of climate change on local income (Lemoine, 2025). Fried (2022) estimates that adaptation investments to storm risk already comprise 1% of the U.S. capital stock and projects that climate change could roughly double that amount. Hsiao (2023) demonstrates a feedback loop when governments cannot commit to their future adaptation plans: public adaptation investments in the form of sea walls can spur private capital investment that justifies subsequent public adaptation investments. Balboni (2025) shows that adaptation to current coastlines constrains the benefits of investing in road networks that would be less vulnerable to future flooding.

4.2.3 The Many Roles of Adaptation Costs

Beyond adaptation actions and their benefits, the costs of adaptation are important to study because they constrain adaptation actions, thus determining how much damage will occur, and because they constitute a potentially avoidable cost of climate change. Early work on climate damages did account for adaptation costs within simulation models, but the level of adaptation was fixed exogenously (Fankhauser and Tol, 1996). In more recent literature, costs of adaptation have not received as much empirical attention as the benefits of adaptation.

Costs are challenging to observe in relevant datasets. Two of the most-studied climate impacts—agricultural yields and mortality—illustrate this challenge. In both cases, the economic outcome is relatively well-measured across many countries around the world, permitting estimates of direct damages and adaptation benefits. In contrast, the costs of inputs in the agricultural sector are not as widely observed, and the range of adaptation actions that affect mortality is not well-established, much less the costs of those actions.¹⁷

In response to this challenge, Carleton et al. (2022) and Hultgren et al. (2025) back out adaptation costs from their estimated marginal benefits. Their approach assumes that agents optimize fully and completely to every instant's climate along a trajectory of climate change—and do so without needing to care that an instant's climate holds only for that instant.¹⁸ In that case, they show that we

¹⁷Consider, for instance, that shifting when activities take place during the day is likely to be a simple but important adaptation to prevent heat-related mortality. But standard approaches to the valuation of time based on wage rates would say that such time-shifting has no net cost.

¹⁸More precisely, this approach assumes that: (i) adaptation is an optimized choice that is made in the absence of constraints and is not primarily biophysical; (ii) adaptation is a function of climate but not of weather realizations; and (iii) adaptation is completely transient. Under these assumptions, (1) agents maximize an adaptation trajectory pointwise and (2) the adaptation trajectory chosen by an agent experiencing a change in climate over time is equivalent to the adaptation trajectory reconstructed from agents living in different climates today. (See the appendix for a formal derivation, and see Mérel, Paroissien and Gammans (2024) for a critique of how this approach treats weather variability.) Nonetheless, Carleton et al. (2022) do estimate positive net benefits to adaptation. They argue that adaptation becomes inframarginal at later points in time. However, if adaptation is a stock that accumulates rather than being completely transient, then forward-looking agents should choose adaptation in awareness of the trajectory of climate change and the derivation no longer holds.

can proxy each agent's experience of climate change over time by the experiences of agents who currently live in a sequence of different climates (we provide an alternative formalization of their argument in the appendix). In other words, identification of adaptation comes from assuming that differences observed across space provide a valid proxy for the effect of differences in climate that agents will face over time. The experiences of agents who currently live in a sequence of different climates can in turn be recovered from a regression like equation (5), subject to usual caveats about omitted variables bias.

Richer data on costs would allow for direct estimation of the marginal costs of adaptation. Recent work by Du Puy and Shrader (2024) pursue this agenda for the agricultural sector in France, a setting with particularly complete data on costs. The paper finds that marginal costs of adaptation are low in the year a temperature shock arrives but the cost of adapting to the past shock gradually rises over subsequent years. This finding highlights the intertemporal tradeoffs involved in adaptation decisions. This intertemporal complexity becomes particularly important when adaptation involves capital investments or migration, a point exemplified by potential adaptation to sea level rise (Fried, 2022; Hsiao, 2023; Balboni, 2025). Data on additional sectors and locations would allow for further estimates along these lines.

The empirical work above focuses on private costs of adaptation, and others have discussed whether private costs of adaptation would or would not, based on envelope theorem logic, enter social costs of carbon calculations. However, some adaptation actions may impose substantial externalities, which would not be subject to the envelope theorem unless internalized by policy. In particular, Deschenes (2022) shows that the external pollution-related costs of adaptation to heat through electricity use may be quite large in comparison to the private costs.

Finally, adjustment costs are an especially understudied class of adaptation costs. Adjustment costs encompass costs incurred in the process of transitioning from one equilibrium climate to another. They therefore always increase the cost of climate change. Adjustment costs also include the costs of handling more volatile weather within a given climate (see Downey, Lind and Shrader, 2023, for the construction sector) and of learning about the new climate (Kelly, Kolstad and Mitchell, 2005). Adjustment costs mean that hot weather can be good for agriculture when typical but bad when unusual (Kelly, Kolstad and Mitchell, 2005). Responses of county-level output to weather shocks are consistent with adjustment costs in aggregate capital stocks and therefore with long-run adaptation exceeding short-run adaptation (Lemoine, 2023). In the big picture, climate change may amount to a massive adjustment cost problem, as the new climate may or may not be objectively inferior to the original one in terms of the eventual, super-long-run economic and ecological equilibrium (Quiggin and Horowitz, 1999, 2003; Kelly, Kolstad and Mitchell, 2005). With that view, understanding adjustment costs becomes crucial to understanding climate damages.

4.2.4 Adaptation Policy

Public policy can affect adaptation. It is therefore important to understand the effectiveness of adaptation in different contexts, opportunities for policy to encourage adaptation, and how policy might inadvertently stymie adaptation. Adaptation has received far less policy focus than mitigation, but as climate change continues, this balance is likely to shift.

Successful adaptation policy faces multiple challenges. Fankhauser, Smith and Tol (1999) observe that timely adaptation requires a combination of information, incentives, and capacity. More accurate information, available further in advance of climate shocks, can help agents smooth their adjustment over time, and reductions in adjustment costs can also help lower the cost of adaptation.

In addition, good adaptation policy requires going beyond the total benefits or costs of adaptation that are relevant to the study of mitigation. Deciding which adaptation actions to promote requires information on the tradeoffs involved in different actions. To inform policy, research needs to address the effectiveness, costs, and market failures surrounding these different adaptation options. For instance, the literature on coastal erosion has maintained a particular focus on policy and on dynamic adjustment (Gopalakrishnan et al., 2016). Carleton et al. (2024) review the adaptation literature, focusing particular attention on studies that inform adaptation policy and the ways research in this area can be strengthened.

Policy can impede adaptation or even induce apparent maladaptation.¹⁹ Scholars have long discussed how agricultural policies, in particular, may impede adaptation (Lewandrowski and Brazee, 1993). Distortions to adaptation have been studied for subsidized agricultural, fire, and flood insurance, subsidized defensive investments, and agricultural price support policies (Kousky, Luttmer and Zeckhauser, 2006; Wagner, 2022; Obolensky, 2024; Baylis and Boomhower, 2023; Fried, 2022; Hsiao, Moscona and Sastry, 2024).

4.3 Spillovers: Trade, Migration, and More

Hell is—other people!

- Jean-Paul Sartre, No Exit

The literatures on direct damages and adaptation largely focus on how climate change in a location impacts output and welfare by altering weather in that same region. But markets link

¹⁹Maladaptation refers to actions that make agents more vulnerable to climate shocks (Barnett and O'Neill, 2010; Schipper, 2020). Fankhauser and Tol (1996) also apply the term to mismatches between adaptation and the current climate due to imperfect information about climate change or due to a fast rate of climate change. Hornbeck and Keskin (2014) document a case where farmers adapt to increased availability of groundwater by growing crops that *increase* their sensitivity to the climate. This behavior can be welfare-maximizing for an agent even as it increases climate damage.

inputs and outputs across space via trade and migration. The effects of climate change on some particular region therefore must account for how climate change's effects on weather in other regions spill over into the first region (see Deschenes and Meng, 2018). In the model of Section 2, the impact of climate change on variable inputs in region A ($d\ell_{Yt}^A/dC$ from equation (1)) depends, via trade, on how climate change impacts current, past, and future weather in other locations (see equation (A-9)). A relatively mature literature, dating to at least Kokoski and Smith (1987) and summarized in Tol (2009), studies climate change within general equilibrium models. An emerging literature leverages advances in spatial economics to analyze trade and migration in a fashion that is both fine-grained and causally informed.²⁰ For a recent review dedicated to the new spatial-climate literature, see Desmet and Rossi-Hansberg (2024); for a recent review of dynamic spatial models with an emphasis on climate change applications, see Desmet and Parro (2025); and for reviews of migration and climate change, see Millock (2015), Berlemann and Steinhardt (2017), and Cattaneo et al. (2019).

4.3.1 Spatial Linkages Missed by the Direct Damages Literature

As early as Cline (1996), it has been argued that the direct damages papers described in Section 4.1 assume constant prices and thus miss welfare impacts that could come from equilibrium effects on relative prices. This can lead to underestimation of climate damages, if assuming constant prices leads the researcher to ignore changes in consumer welfare. Conversely, ignoring substituting behavior on the part of consumers can lead to overestimation. Gouel (2025) summarizes these arguments in the context of trade in the agricultural sector.

A recent spatial literature naturally incorporates price effects, as it models the optimization behavior of both supply- and demand-side agents in a general equilibrium framework. Desmet and Rossi-Hansberg (2015) develop a calibrated spatial endogenous growth model, with iceberg costs on trade. They explore the implications of a coarse border between the global North and global South that hinders trade and migration. The authors argue that trade in goods directly protects against climate damages, and that trade responds as climate change impacts comparative advantage around the world.²¹ Because these adjustments work to maintain aggregate production, the authors expect climate damages to be small. Within their stylized model, the authors show that the evolution of comparative advantage can lead high latitudes to specialize in agriculture and low latitudes to

²⁰A distinct literature studies how the spatial distribution of climate change impacts affects optimal and feasible mitigation policies (e.g., Nordhaus and Yang, 1996; Tol, 2002; Brock, Engström and Xepapadeas, 2014; Krusell and Smith, 2022). Benveniste, Oppenheimer and Fleurbaey (2020) integrate international migration into an IAM and study the costs of restrictive border policies. They determine migration from a reduced-form gravity model. The papers we discuss below explicitly represent migrants' decision problems.

²¹Krusell and Smith (2022) model how trade in capital ownership rights via a global bond market can similarly protect against climate damages.

specialize in industry. Although this model is too stylized to yield ballpark estimates of climate impacts, it does suggest that general equilibrium channels should not be ignored.

4.3.2 Trade and Migration as a Form of Adaptation

Costinot, Donaldson and Smith (2016) seek to understand the interaction of climate change and trade within the agricultural sector. The authors estimate their model with fine-scaled agricultural data on ten major crops for 50 countries (subsequently extended by Gouel and Laborde (2021) to include more crops and countries). The authors calibrate crop productivity to output from an agronomic model. The agronomic model has perfect, costless adaptation in the use of inputs for growing each crop, and the authors' model has perfect, costless adaptation in the choice of crop to grow. The authors conduct counterfactuals in which they turn off either trade or cross-crop adaptation. Within their model, the ability to adapt to climate change by switching crops reverses much of the damages from a warming world. In contrast, trade flows do not have a substantial impact on climate damages. Intuitively, reconciling their model with the relatively small agricultural trade flows observed in the data requires large trade costs (or a strong preference for domestic products). When they turn off trade adjustments, they implicitly raise trade costs to infinity. Because their calibrated trade costs are already large, their calculated effect of trade is relatively small.²² An idealized comparison of frictionless trade with a no-trade-adjustment scenario would be more in keeping with their idealized adaptation counterfactual.

Desmet et al. (2021) emphasize how the evolution of comparative advantage mitigates climate damages. The authors leverage the model of Desmet, Nagy and Rossi-Hansberg (2018) to calibrate the impact of sea level rise. Within their model, innovation is local and correlated across locations. Labor can move across locations and is a source of new ideas. As discussed below, model assumptions make optimal innovation and migration choices equivalent to myopic ones, so that agents are unconcerned about future climate change when making either choice.

In their model, innovation and migration responses greatly reduce aggregate losses from coastal flooding by reallocating economic activity. In particular, the slow nature of sea level rise allows innovations to accumulate in clusters further inland. As people and innovative activities relocate, they increase inland stocks of knowledge, which in turn makes inland locations even better at innovating in later periods. These dynamics were missing from earlier studies of sea level rise

²²Their no-trade-adjustment scenario is hard to interpret as a pure change in trade costs because it fixes each crop's *share* of a country's exports. This counterfactual therefore does allow trade in crops to evolve with climate change, with the pattern of that adjustment restricted by the assumption of fixed shares. By including some trade adjustment in level terms, their no-trade-adjustment scenario again favors finding a small role for trade when compared to their reference scenario. Gouel and Laborde (2021) show that turning off trade adjustment is much more costly when the counterfactual instead fixes bilateral import shares, so that countries can adjust their export share but cannot adjust their import mix.

with static computable general equilibrium models (e.g., Bosello, Roson and Tol, 2007). The authors argue that the loss of agglomeration economies in coastal locations is partly offset by the appearance of agglomeration economies in inland locations and by the ability of inland knowledge stocks to compound. Importantly, these estimates ignore frictions in housing markets and political economy considerations that may hinder efficient movements. Others have found such factors to be empirically important to sea level rise (Bakkensen and Barrage, 2022; Hsiao, 2023; Balboni, 2025).

Costinot, Donaldson and Smith (2016) and Desmet et al. (2021) also emphasize spatial heterogeneity of impacts, with implications for global inequality. Both papers find regions with gains from climate change, regions with moderate losses, and regions with substantial losses. Spatial heterogeneity is not in itself a new finding: we described above how many direct damages papers also find unequal outcomes across regions, and some integrated assessment model have long included regional damages. The contribution of the recent literature is to show that impacts vary not just mechanically with baseline climate, income, or the rate of warming but also with how changes in climate around the world change comparative advantage and factor distribution. In Desmet and Rossi-Hansberg (2015), lower latitudes become more industrial not because they get better at making stuff but because they become less agriculturally productive even as higher latitudes become more agriculturally productive. And in Desmet et al. (2021), inland places each gain a little not because sea level rise benefits them directly (indeed, there is no direct effect of sea level rise on inland places) but because economic activity moves inland in response to realized sea level rise. Capturing the evolution of comparative advantage and factor distribution requires a modeling framework that links locations to each other.

4.3.3 Agriculture and Trade

Some have argued that impacts on agriculture have limited importance to developed countries—and potentially to a future, richer world—because agriculture comprises a small share of GDP (e.g., Nordhaus, 1991; Schelling, 1992). However, demand for agricultural goods is highly inelastic and production of some crops is very spatially concentrated. As a result, weather shocks in particular locations can have major impacts on consumers worldwide via agricultural markets (Cline, 1996; Roberts and Schlenker, 2010).

The direct damages literature summarized in Section 4.1 has made progress estimating how weather impacts agricultural productivity, but along the way it lost an older focus on how local shocks can propagate through agricultural markets. Early work embedded crop responses in trade models and concluded that adjustments through trade would substantially buffer impacts on agricultural productivity and that agricultural price changes would affect which countries are winners and losers from climate change (e.g., Kane, Reilly and Tobey, 1992; Tobey, Reilly and

Kane, 1992; Reilly and Hohmann, 1993; Reilly, Hohmann and Kane, 1994). Early work also emphasized the potential for large welfare impacts stemming from relative price changes driving increases in hunger and food insecurity (Rosenzweig and Parry, 1994; Cline, 1996).

A recent literature has undertaken a more complete appraisal of agricultural impacts, emphasizing the role of trade and the incidence of impacts on the developing world (reviewed by Gaigné and Gouel, 2022). Building on longstanding insights (e.g., Adams et al., 1998), Moore et al. (2017) show that the price changes induced by widespread climate change are critical for its incidence. When crop productivity decreases, the corresponding increase in crop prices tends to benefit agricultural exporters (and in particular tends to benefit farmers). An analysis that treated climate change as only a localized shock would miss this effect on prices (see also Cline, 1996). Consistent with this story, Lemoine (2025) estimates that purely local extreme heat reduces income by more in more agricultural U.S. counties whereas these same counties are less exposed to widespread extreme heat.

In a hybrid approach that combines reduced-form causal inference and trade modeling, Dingel and Meng (2025) show that spatial correlation in crop productivity induced by the El Niño Southern Oscillation (ENSO) increases gains from trade in more productive countries and reduces gains from trade in less productive countries. That spatial correlation thereby increases cross-country inequality in welfare.

Some scientists believe that it is technically possible (albeit potentially costly) to adapt enough to offset global food losses from moderate climate change (see Vermeulen, Campbell and Ingram (2012, p. 210), although IPCC (2022) projects stronger constraints). In that case, trade barriers loom large as a source of regional food losses. Several papers show that reducing barriers to trade could be an especially important form of adaptation policy in agriculture. In general, trade adjusts to track changes in comparative advantage, which depends on how agricultural productivity changes in comparison to productivity in manufacturing and services.

Nath (2025) shows that trade barriers become especially costly for countries where populations are close to subsistence levels. He shows with panel regressions that climate change should reduce productivity in non-agricultural sectors of poorer countries by less than prior literature suggested agricultural productivity would fall. One might expect poorer countries to substitute towards non-agricultural production and import more food, but trade barriers can hinder this adjustment. Moreover, when consumers with nonhomothetic utility functions place a high premium on having enough food to meet a subsistence need, Nath (2025) shows that the combination of reduced local agricultural productivity and an inability to trade can actually lead poorer counties to specialize in agriculture *even more* under climate change.²³

²³In a model with homothetic (Cobb-Douglas) preferences, Conte et al. (2021) find that a cluster of agricultural specialization would emerge in sub-Saharan Africa in the absence of climate change but that climate change shifts this

Other work shows that trade barriers are important determinants of how agricultural markets adapt to climate change. Conte (2022) shows that, within sub-Saharan Africa, climate change will cause less migration and generate less unequal outcomes if agricultural trade barriers can be reduced. To ground counterfactuals in policy rather than idealized experiments, this paper simulates reducing migration and trade barriers from their estimated levels within sub-Saharan Africa to estimated levels within the European Union.

Agricultural and trade policies may interact with climate change (Lewandrowski and Brazee, 1993; Reilly, 2011). Hsiao, Moscona and Sastry (2024) empirically study how agricultural trade barriers serve as endogenous policy choices. They show in reduced-form regressions that agricultural support responds differently to temporary shocks to local and foreign food production.²⁴ Because climate change is widespread, it is a priori unclear which type of policy response dominates. When they use their estimated responses to short-run weather shocks to investigate long-run climate change, governments' responses to the effects of climate change on foreign producers improve welfare whereas governments' responses to the effects of climate change on domestic producers worsen welfare, primarily by changing trade policies. Simulations suggest that agricultural policy responses on net increase losses from climate change.

These recent papers are closely related to Costinot, Donaldson and Smith (2016). They embed reduced-form evidence in a static model that allows them to discuss spatial spillovers. They take the details of agriculture seriously but represent the rest of the economy in a more stylized fashion. Another strand of recent literature is more closely related to Desmet et al. (2021). It is more thoroughly structural, which allows for more comprehensive coverage at the cost of more particular assumptions about the economic environment. We turn to it next.

4.3.4 Broadening the Analysis of Spatial Linkages

The early spatial spillovers papers tend to focus on one or two spatial spillovers and to construct models in which the expectation of future climate change is irrelevant to decision-making. New and ongoing work attempts to broaden these models.

Cruz and Rossi-Hansberg (2024) develop an integrated assessment model that, building on Desmet, Nagy and Rossi-Hansberg (2018), adds costly trade to the representations of migration and innovation from Desmet et al. (2021). They find that global losses from warming are just about equally split between hits to amenities and hits to productivity. Within their model, migration is a more important channel of adjustment than trade: because most trade is local and climate change

cluster elsewhere. These losses are not compensated by specialization in non-agricultural production, due to the low initial productivity of the non-agricultural sector relative to its productivity in other regions and to the relatively low optimal temperature for the non-agricultural sector.

²⁴Their empirical design does not distinguish between direct reactions to unfavorable weather and strategic reactions to others' reactions to unfavorable weather. Their estimated reactions are a composite of these potential policy drivers.

is spatially correlated, trade is of limited utility for adaptation.²⁵

Rudik et al. (2022) abstract from innovation and investment in order to introduce production networks (i.e., input-output linkages among sectors and locations) and households who account for future climate change when migrating. They find a roughly 3 percentage point loss to U.S. welfare from climate change, driven by hits to amenities that overwhelm gains to productivity. The global losses are substantially larger. In both cases, a substantial portion of the welfare loss comes from within-year temperature extremes. Adaptation makes U.S. losses around 1 percentage point smaller than they otherwise would be, and forward-looking behavior by households accounts for around a quarter of the adaptation benefit.

Bilal and Rossi-Hansberg (2023) study the effects of storms and heat waves in the U.S. They abstract from costly trade and innovation in order to introduce forward-looking capital investment and forward-looking migration. They show that storms substantially reduce welfare by depreciating capital. They also show that making households and firms ignorant of future climate change would alter migration flows by reducing the incentive to move, both directly and by misallocating capital investment towards exposed regions.

All three of these papers tie their models' parameterization to causally-informed reduced-form estimation. By inverting their model and solving the resulting system of equations, Cruz and Rossi-Hansberg (2024) obtain the grid cell-level amenities and productivities that rationalize gridded population and economic data in 1990, 1995, 2000, and 2005. They then regress these parameters on temperature within a panel environment in order to estimate damage functions. Rudik et al. (2022) express their model's equilibrium conditions for trade and migration in a form amenable to panel estimation of the effects of temperature on, respectively, productivity and amenities. Bilal and Rossi-Hansberg (2023) invert a steady-state in their model to recover a set of parameters conditional on investment and migration elasticities. They pin these elasticities down by indirect inference, seeking to make event study responses within their model consistent with event study responses in the data. Those responses are expressed in relative terms (i.e., relative to income per capita and investment), which permits them to use responses in level terms to identify damage functions.²⁷

Importantly, these three papers imply different magnitudes of global climate damages, although direct comparison is complicated by the fact that they examine different end-point years and different temperature change scenarios. Rudik et al. (2022) estimate that U.S. welfare is reduced by 3%

²⁵Burzyński et al. (2022) project that climate-induced migration will be small relative to other migration pressures and that it does not greatly help the people most severely affected by climate change.

²⁶The temperature variable in Cruz and Rossi-Hansberg (2024) differs from nearly all other literature: they use winter (January or July, depending on the hemisphere) temperature over a decade. Most other literature uses annual temperature constructed from all months.

²⁷SUTVA may not hold in a general equilibrium context, so Bilal and Rossi-Hansberg (2023) do not just feed reduced-form regression coefficients into their model. Instead, they replicate the regression within their model and match its coefficient.

and global welfare by 21% by 2100 for RCP 4.5 (i.e., with global warming of around 2.5 to 3°C). Bilal and Rossi-Hansberg (2023) estimate that U.S. welfare is reduced by more than 10% for both workers and capitalists by 2100 for a global temperature increase of 4°C. Cruz and Rossi-Hansberg (2024) estimate that global welfare is reduced by 10% by 2200 but for RCP 8.5 (i.e., with global warming of around 7°C by 2200). More work is needed to yield a consensus on how various adaptation mechanisms and spatial spillovers interact and to be able to quantify global damages under different emission pathways.

4.3.5 Limitations of Early Work

The early spatial spillovers papers each introduce new spatial considerations to adaptation and impacts. To do so, they dramatically simplify the time dimension of adaptation, with the effect of climate via past and future weather assumed to be zero.

Costinot, Donaldson and Smith (2016) optimize static adaptation decisions using an agronomic model. A limitation of their approach is that it has zero cost to adjusting which crops are planted.²⁸ Because their data are purely cross-sectional, they cannot estimate any such adjustment costs. In their no-adaptation scenario, Costinot, Donaldson and Smith (2016) hold crop shares fixed (implicitly increasing the cost of adjusting crop choices from zero to infinity) while farming inputs are still re-optimized.

In Desmet and Rossi-Hansberg (2015), innovations become available to all firms in a location (and diffuse to firms in nearby locations) after one period, so that innovation decisions are not forward-looking.²⁹ And migration is costless when feasible, so workers can optimally choose where to locate in a myopic fashion. As a consequence, no actors in the model make forward-looking decisions that account for the trajectory of warming. That is, decisions are dynamic in the sense that they evolve with warming but are not dynamic in the sense that they do not depend on beliefs about how variables such as temperature will evolve in subsequent periods.

Desmet et al. (2021) introduce costly migration, but their economic environment makes all migration and innovation decisions optimally equivalent to myopic decisions: people pay a moving cost only as long as they stay in a location away from their original home and their costs of moving again are independent of any prior moves, and innovations again diffuse freely across time periods. These assumptions make the anticipation of future sea level rise irrelevant within the authors' model. Moreover, the postulated migration cost structure means that labor suffers no direct losses

²⁸Discussing an early analysis of agricultural damages that used analogous assumptions, Fisher and Hanemann (1993, p. 142) observe, "It is our hunch that some of the most important impacts of climate change arise because of the effect on capital stocks which, if not destroyed, are rendered prematurely obsolete. The costs of these effects depends critically on their timing relative to the normal replacement cycle of the affected capital."

²⁹The rents here accrue to land rather than firms, but the endpoint of static innovation decisions mimics the endpoint of assuming one-period patents in the macro-climate literature (e.g., Acemoglu et al., 2012).

from slowly moving in step with sea level rise rather than waiting to move inland in fewer, larger steps. These migration incentives slow the formation of economic clusters deep inland but, via the spatially correlated specification of productivity, permit coastal knowledge stocks to migrate inland along with the labor force. Similar dynamics were at play in earlier analyses of sea level damage. As Fisher and Hanemann (1993, p. 139) observed, such analysis "implicitly assumes a smooth and efficient adjustment process that minimizes the damage: after tract A . . . is flooded, tract B becomes shoreline, and everybody dutifully moves over one tract to the right. Regrettably, this does not describe the world as we know it. . . . The inability to respond effectively is a cost of doing business that has to be included in any estimate of the economic impacts of global climate change."

The more recent papers generalize some of these assumptions, leading to some qualitatively different results. For instance, Bilal and Rossi-Hansberg (2023) find a smaller value of migration than in prior work with households whose optimization leads them to ignore the future. Part of this is because people will not move as much in models that do not assume that moving costs can be reversed in a subsequent move, and part of this is because the net benefits from adjusting migration are smaller once migration patterns are intertemporally optimized.³¹

4.3.6 Potential Progress for Spatial Work

Progress is being made, and can continue to be made, on understanding the spatial consequences of climate change.

Existing papers each abstract from potentially important channels, whether production networks, costly trade, capital investment, or the forward-looking nature of migration or innovation. It is not yet clear which of these channels are more quantitatively important and more critical to include going forward. Moreover, because these models are estimated using their own equilibrium conditions, it is unclear how abstracting from some channels affects a model's calibration of other channels. For instance, estimates of local productivities may be sensitive to whether equilibrium conditions account for trade, investment, or innovation.

Second, recent papers are limited by the data available. Papers that seek to undertake gridded global analyses typically use the G-Econ database, which contains estimates of economic output at the 1-degree longitude by 1-degree latitude scale (Nordhaus, 2006). These estimates are constructed

³⁰The migration cost structure has another implication as well: agents always have an incentive to, all else equal, return to their original home so that they no longer pay any flow costs of having migrated. An agent who moves away because of a preference shock is decently likely to move back in the future, whereas an agent who moves away due to a persistent factor such as climate change is more likely to stay away from home.

³¹In an alternative approach that yields a higher value of migration, Baluja (2024) combines a structural model of migration and wages, microdata on households, and climate modeling data (for variation in expected weather) to study the role of beliefs about future climate change in driving climate migration within Mexico. The use of microdata allows for estimation of heterogeneity within the population, particularly in the costs of migrating (see also Mathes, 2025).

by multiplying grid-level population by per-capita output, where the latter is taken from regional output data (e.g., at the level of political subdivisions for high-income countries, but at the urban versus rural level for lower-income countries). The estimates of output in much of the world are thereby tied to proportional scaling rules of varying coarseness.

Systematic errors in gridded or subnational data could propagate into estimated model parameters, an issue that has affected analyses using the DOSE subnational GDP dataset (Bearpark, Hogan and Hsiang, 2025). In addition, spatial autocorrelation must be carefully accounted for in inference when using fine-grained data (Schötz, 2025). When subnational—especially downscaled—data do not accurately represent the true underlying variation, bias can ensue. In other cases, model equations require data on variables such as population flows that restrict the geographic scope of the application (e.g., Rudik et al., 2022). And data at the resolution of individuals or properties will have restricted geographic coverage (e.g., Hsiao, 2023; Baluja, 2024). In contrast to economic data, many weather variables are fairly well-measured on fine grids with comprehensive geographical coverage (see Auffhammer et al., 2013), though quality is lower in places like Africa with lower density of weather monitoring infrastructure (Dinku, 2019).

Third, there are many ways to specify temperature variables (for model selection, see Akyapı, Bellon and Massetti, 2025; Hultgren et al., 2025). Papers should be clear about why they make particular functional form and aggregation decisions.³² In addition, a substantial fraction of real-world impacts may be determined not by the level of temperature in a given year but by how fast temperature is changing (Fankhauser and Tol, 1996) or by the variability of temperature (Kelly, Kolstad and Mitchell, 2005; Lemoine and Kapnick, 2016; Kotz et al., 2021; Linsenmeier, 2023). The rate and variability of warming become especially important when models have adjustment costs.

Fourth, the papers in the spatial spillovers literature tend to emphasize the dynamic aspects of spatial variables such as migration over the dynamic aspects of other forms of adaptation such as local capital investment. Yet not only are the past and future terms in equation (A-9) potentially relevant in their own right, the spatial effects of interest to this literature should comprise dynamic adaptation in other locations.

Fifth, these papers tend to work with tractable special cases, but it could be important to generalize some assumptions. For instance, the few papers that study climate change in the context of production networks assume Cobb-Douglas forms (e.g., Rudik et al., 2022; Zappala, 2024). Permitting complementarities would change the degree to which effects on one location or sector are transmitted to others and also change the pattern of that transmission (see Baqaee and Farhi, 2019).

³²For instance, Colacito, Hoffmann and Phan (2019) relate impacts to summer temperature whereas Cruz and Rossi-Hansberg (2024) relate impacts to winter temperature.

Sixth, these papers tend to treat spatial linkages as reflecting first-order concerns about comparative advantage. However, spatial linkages may also reflect second-order, insurance motivations. For instance, in Castro-Vincenzi et al. (2024), firms trade to diversify risks, which has the side effect of amplifying inequality in climate impacts. And in Balboni, Boehm and Waseem (2024), firms adjust the number and composition of their suppliers with an eye towards how flood-prone their suppliers are and also how flood-prone their connecting routes to those suppliers are.

Seventh, these papers could do more to transparently identify key parameters. In particular, much work in the new spatial-climate literature identifies trade and migration costs with the residuals implied by observed trade and population patterns. These residuals are determined by the rest of the model. There can even be enough free parameters to fit the data perfectly. In that sense, the trade and migration costs that are so critical to this literature are closer to calibrated than empirically identified. In addition, these residuals are not structural. They are a reduced-form composite of multiple structural elements, and some of those structural elements may be endogenous to climate change. For instance, tariff policies are likely a critical component of calibrated trade barriers, but Hsiao, Moscona and Sastry (2024) show that these tariff policies themselves respond to weather shocks. Future work should consider ways of identifying migration and trade costs from variation in data, which may require using microeconomic data. Such work has been undertaken at the level of individual countries (e.g., Baluja, 2024; Mathes, 2025), but undertaking it at the global level will require novel modeling choices or novel empirical approaches.

Finally, one primary motivation for constructing a structural model is to be able to evaluate novel policy counterfactuals. To date, many papers focus on constructing damage estimates and measuring channels by taking, for instance, migration or trade costs to arbitrarily high or low levels (for an exception, see Conte, 2022). Future work could seek to calibrate the parameters of policy counterfactuals to match relevant real-world policies.

4.4 The Social Cost of Carbon and Policy Updates

Researchers have been working to update the SCC to reflect the wealth of new evidence on climate damages. The SCC monetizes the reduction in welfare from emitting one more unit of carbon dioxide along a predefined emission pathway (Nordhaus, 2014, 2019a). In the absence of other externalities or fiscal considerations, the SCC equals the optimal carbon tax along the optimal emission pathway. The SCC is widely used in policy evaluation, both for formal cost-benefit analysis by administrative agencies and in the academic literature. Around 15 years ago, the U.S. government undertook a significant interagency effort to develop a SCC that could harmonize various governmental applications (Greenstone, Kopits and Wolverton, 2013; Metcalf and Stock, 2017). Its central value was \$21 per ton of CO₂ (2007 U.S. dollars, around \$34 in 2025\$), with

sensitivity analysis conducted at higher and lower values (which were tied to discount rate and damage considerations). This central value was applied in subsequent regulatory analyses and informed legal challenges (Metcalf and Stock, 2017).

Over the subsequent decade, there were widespread calls for methodological and conceptual updates to the federal government's SCC estimate (Burke et al., 2016; Carleton and Hsiang, 2016; Diaz and Moore, 2017). Most notably, the National Academies (NASEM) released a report with detailed recommendations (National Academies of Sciences, Engineering, and Medicine, 2017). One recommendation was to break integrated assessment models up into modules (corresponding to socioeconomic projections, climate models, damages, and discounting) so that individual components could be independently updated by subject-area experts.

One team of researchers, Rennert et al. (2022), implemented the NASEM recommendations, releasing the open-source model GIVE (Greenhouse gas Impact Value Estimator). A second team, the Climate Impact Lab (CIL), released estimates of damages for various parts of the economy (e.g., Rode et al., 2021; Carleton et al., 2022; Hultgren et al., 2025). Policymakers have paid close attention to these empirical and conceptual updates. In 2023, the U.S. Environmental Protection Agency released new estimates of the SCC, citing several recent papers (Howard and Sterner, 2017; Rode et al., 2021; Carleton et al., 2022; Rennert et al., 2022; Climate Impact Lab, 2023). The new SCC is based on estimates of the effect of temperature, sea level rise, and CO₂ fertilization on mortality, agricultural output, energy use, labor supply, and coastal land use (for a summary, see EPA, 2023, Table 3.2.1). These new estimates place the SCC at \$190 per ton of CO₂ for emissions in 2020 (in 2020 dollars, or around \$240 per ton of CO₂ in 2025 dollars), using a near-term discount rate of 2% (EPA, 2023; Kopits et al., 2025).

5 Room for Future Work

Long is the way

And hard, that out of Hell leads up to Light.

- John Milton, Paradise Lost

Dell, Jones and Olken (2014) proposed that future work should emphasize spatial spillovers, mechanisms, and longer-run effects. We have described recent, initial progress on the first of these goals, aiming to capture the widespread nature of climate change. We have described some progress on the second of these goals, with a need for more progress in order to reinforce causal understanding. And we have highlighted the importance of the third of these goals for capturing the anticipated and persistent nature of climate change. In addition to these high-level goals carried over from Dell, Jones and Olken (2014), we here propose concrete directions for future work. We

begin with what we see as primarily extensions of existing analysis and proceed to areas more conceptually distinct from the bulk of existing literature.

Estimates on Infrastructure and Other Durables. Whereas direct damages have been robustly analyzed for many areas of the economy, effects on long-term investment have been less well studied. For instance, construction has not been extensively studied. Construction labor productivity may be impacted by outdoor temperatures, but that is not the whole story. New construction may be needed to deal with climate-related natural disasters, and persistent climate change is likely to change the desired composition of construction activity across places.

Comprehensive Estimates Using Spatial Models. A key aim of the direct damages literature and associated integrated assessment models has been to work towards harmonized estimates of expected future climate damages, frequently presented in terms of end-of-century percentage of GDP losses. The spatial models we have surveyed suggest that the direct damages literature is missing important economic forces, but this spatial literature has not yet produced consensus estimates of how spatial spillovers and dynamic effects change end-of-century impacts. The initial papers report negligible climate damages (Desmet and Rossi-Hansberg, 2015, for instance), but some more recent papers suggest impacts in the range of 3-20% of welfare, relative to a counterfactual without climate change (Rudik et al., 2022; Bilal and Rossi-Hansberg, 2023). Cruz and Rossi-Hansberg (2024) estimate smaller damages, and both Bilal and Rossi-Hansberg (2023) and Cruz and Rossi-Hansberg (2024) emphasize the uncertainty in their estimates. With only a handful of spatial papers attempting to provide comprehensive end-of-century estimates, it is hard to know how much weight to put on these numbers or how to compare them to the direct damages literature.

Financial Markets as a Channel for Capital Reallocation. There are large, and to date parallel, literatures on the financial and economic effects of climate change (Giglio, Kelly and Stroebel, 2021). We have discussed climate change consequences that are called "physical risks" in the climate finance literature (Carney, 2015). Our conceptual framework provides one avenue for integrating these literatures by considering how financial markets act as a channel for reallocating capital.

Tipping Points. Even over short periods of time, changes in the climate need not be small or smooth (Lenton et al., 2008; Armstrong McKay et al., 2022; Wang et al., 2023). Tipping points—such as the collapse of the Atlantic meridional overturning circulation (AMOC, related to the Gulf Stream)—raise the threat of rapid, large-magnitude changes or catastrophic impacts that could have especially severe consequences in a world with large adjustment costs. Recent work has made technical progress on incorporating tipping points into climate IAMs (reviewed in Kopits, Marten and Wolverton, 2014; Li, Crépin and Lindahl, 2024; Jensen and Traeger, 2024). Existing work has used simplified models of tipping processes, impacts, and information, partly as a result

of the state of scientific knowledge and partly as a result of limitations in economic models (Kopits, Marten and Wolverton, 2014). The new spatial models could be critical to estimating how various tipping points would change damage relationships, especially as many tipping points change the spatial pattern of climate change. And in the presence of adjustment costs, the ability of society to forecast and observe tipping points becomes critical. Further work on tipping points is of renewed importance because of recent natural science evidence showing larger probabilities of triggering important tipping points (Armstrong McKay et al., 2022; Wang et al., 2023; van Westen, Kliphuis and Dijkstra, 2024).

Natural Capital. Following the literature to date, we have emphasized market damages from climate change. However, the focus on market damages risks missing the forest for the timber. Come what may, the Earth will lose a substantial fraction of its natural heritage (Urban, 2015; IPCC, 2018). In time, new arrangements of species and ecosystems will emerge, but whereas the process of adjustment for human systems may take decades, the process of adjustment for natural systems may take millennia. Valuing projected changes in ecosystems and natural capital requires valuing changes in both their use values (as inputs to production) and their non-use values (as goods people care about directly) (see Krutilla, 1967; Hanley and Perrings, 2019; Bastien-Olvera and Moore, 2020). Prior work has formally explored discounting under damages to natural capital (e.g., Hoel and Sterner, 2007; Heal, 2009b; Gollier, 2010) and numerically assessed implications for the social cost of carbon (e.g., Tol, 1994; Sterner and Persson, 2008; Brooks and Newbold, 2014; Bastien-Olvera and Moore, 2020; Drupp and Hänsel, 2021). A key empirical question concerns the degree to which specific types of natural capital are essential in production and how that substitutability may change as the level of natural capital declines (see Cohen, Hepburn and Teytelboym, 2019). Future work could additionally consider the non-use costs of large-scale environmental change and how non-use preferences evolve as the environment changes. It is important to obtain a sense of the scale of non-use costs, as there is a chance that focusing on more readily measured market impacts misses the major part of the story.

Model Evaluation. It is important to probe whether the structure and calibration of models are sensible. Climate science relies heavily on structural models based on physical relationships, and there has long been an emphasis on evaluating models through benchmark simulations (e.g., Tebaldi and Knutti, 2007; Taylor, Stouffer and Meehl, 2012). The AgMIP project (AgMIP, 2025), which compares agricultural models of climate impacts, progresses in this direction. But climate economics more broadly lacks a set of benchmark simulations. For instance, perhaps well-calibrated economic models should be able to simulate economic responses to seasonal climate patterns such as El Niño or to major volcanic eruptions, without having used those same phenomena in calibration. Or perhaps models calibrated to microdata from some region or time period should be able to recreate aggregate data from other regions and time periods. Without established benchmarks,

tests of external validity run the risk of cherry-picking and it becomes difficult to assess models' relative accuracy.

Using Multiple Approaches to Get a Richer Picture. We have emphasized that no one approach is likely to robustly and credibly estimate impacts that match those of widespread, persistent, anticipated climate change (see Section 3). A combination of approaches could provide a fruitful path toward improving our understanding of some issues we raise. As Imbens (2010) discusses, there is a rich—if relatively recent—history in economics of using experiments and quasi-experiments to aid identification in structural models, an approach that could hold promise for the study of climate damages. There may also be room for new sources of quasi-experimental variation, taking advantage of the fact that climate change is here now. For instance, researchers may either find or create quasi-exogenous variation in information about future climate change and assess how information affects adaptation choices (see Haaland, Roth and Wohlfart, 2023). Or researchers may take advantage of quasi-exogenous variation in public adaptation projects to estimate their influence on climate impacts and individuals' choices (e.g., Kelly and Molina, 2023). We anticipate the emergence of creative quasi-experimental designs in the coming years.

6 Concluding Discussion

The path to paradise begins in hell.

- Dante Alighieri, *Inferno*

New science on climate change continues to emerge, and understanding of the economic implications continues to evolve. We have reviewed recent advances in this literature, emphasizing that we have learned a great deal over the last decade about direct damages, about the potential for adaptation, and about how direct damages can be mitigated or amplified by spatial linkages such as global trade.

There has been particularly substantial progress isolating the effects of one-off, potentially surprising, and localized weather shocks. A key remaining challenge is learning about substantive questions involving persistent, anticipated, and widespread changes in climate. A restored focus on matching the persistent, anticipated, and widespread nature of climate change can help in this endeavor, not by leaving the insights of the causal revolution behind, but by integrating causal identification into economic models of climate change impacts.

Beyond the concrete next steps from Section 5, there are additional, deeper challenges that remain. Projecting the damages from climate change is hard in part because it is fundamentally forward-looking: scientists anticipate future physical changes to the climate system that society can react to and that are out-of-sample from what we can observe in human history. But it is not

only the forward-looking nature of climate change damage estimation that challenges economists. Isolating the effects of climate change is intrinsically hard.

Imagine that we are looking back from 2100, wondering how much climate change has cost to date. Even at that point, it would be challenging to robustly and credibly identify the effects of the climate change that occurred. We would still face econometric concerns when using cross-sectional variation, interpretation concerns when using panel variation, and model robustness concerns when specifying formal structure. Given this difficulty, we should not expect to obtain firm estimates of the cost of future climate change with the limited data we have in the 2020s. Several implications follow.

First, it is valuable to pursue diverse research methods, as no one approach will be the one to get it all right. We should not require any single paper to do everything, and we should encourage work on ways to combine methods. For instance, structural models can target moments that correspond to the identification strategies used in cross-sectional and panel methods. It is important to assess how large a role various model assumptions may play in qualitative conclusions and which types of effects are likely to be large or small in practice.

Second, it is critical to develop distributions of damages that contain a more complete accounting of uncertainty. Recent work has studied how uncertainty affects the social cost of carbon (Jensen and Traeger, 2024). And recent governmental updates to the social cost of carbon have begun incorporating econometric uncertainty, based on sampling variation in panel estimators (EPA, 2023). We have seen that each existing approach to estimating damages imposes model assumptions, some more explicitly than others and some more particularly than others. It is important to develop measures of uncertainty that account for uncertainty induced by model assumptions, by model misspecification, and by unmodeled channels for impacts and adaptation. These sources of uncertainty potentially swamp the econometric source of uncertainty that economists are more comfortable presenting.

Third, economists should devote more effort to developing policy frameworks that do not rely on precise estimates of the marginal damage from carbon emissions. Indeed, policymakers are not waiting for economists to finally form a consensus around damage estimates. Some economists argue that pollution limits have special merit when marginal damages are so deeply uncertain (e.g., Baumol, 1972). Some economists explore carbon pricing under concerns about model uncertainty (e.g., Barnett, Brock and Hansen, 2020; Rudik, 2020). And other economists consider approaches to aggregating and revealing dispersed agents' information about climate change and climate damages (e.g., Aliakbari and McKitrick, 2018; Giglio, Kelly and Stroebel, 2021; Schlenker and Taylor, 2021; Lemoine, 2022). Taking the inherent limitations on knowledge seriously opens the door to analyzing the resilience of mitigation and adaptation policies to model error. Limited information is better than no information, and acting on limited information is better than waiting on complete

information that will never arrive.

References

- **Acemoglu, Daron.** 2010. "Theory, general equilibrium, and political economy in development economics." *Journal of Economic Perspectives*, 24(3): 17–32.
- **Acemoglu, Daron, Philippe Aghion, Leonardo Bursztyn, and David Hemous.** 2012. "The environment and directed technical change." *American Economic Review*, 102(1): 131–166.
- Acharya, Viral V., Timothy Johnson, Suresh Sundaresan, and Tuomas Tomunen. 2022. "Is physical climate risk priced? Evidence from regional variation in exposure to heat stress." National Bureau of Economic Research Working Paper 30445.
- Adams, Richard M., Brian H. Hurd, Stephanie Lenhart, and Neil Leary. 1998. "Effects of global climate change on agriculture: an interpretative review." *Climate Research*, 11(1): 19–30.
- Adams, R. M., B. A. McCarl, D. J. Dudek, and J. D. Glyer. 1988. "Implications of Global Climate Change for Western Agriculture." *Western Journal of Agricultural Economics*, 13(2): 348–356.
- **AgMIP.** 2025. "AgMIP Global Economics." https://agmip.org/global-economics/, Accessed: 2025-09-30.
- **Akyapı, Berkay, Matthieu Bellon, and Emanuele Massetti.** 2025. "Estimating macro-fiscal effects of climate shocks from billions of geospatial weather observations." *American Economic Journal: Macroeconomics*, 17(3): 114–159.
- **Albouy, David, Walter Graf, Ryan Kellogg, and Hendrik Wolff.** 2016. "Climate amenities, climate change, and American quality of life." *Journal of the Association of Environmental and Resource Economists*, 3(1): 205–246.
- **Aliakbari, Elmira, and Ross McKitrick.** 2018. "Information aggregation in a prediction market for climate outcomes." *Energy Economics*, 74: 97–106.
- **Angrist, Joshua D., and Jörn-Steffen Pischke.** 2010. "The credibility revolution in empirical economics: How better research design is taking the con out of econometrics." *Journal of Economic Perspectives*, 24(2): 3–30.
- **Anttila-Hughes, J.K.** 2016. "Financial market response to extreme events indicating climatic change." *The European Physical Journal Special Topics*, 225(3): 527–538.

- **Arellano, Manuel.** 2003. "Error in variables." In *Panel Data Econometrics*. 47–54. Oxford University Press.
- Armstrong McKay, David I., Arie Staal, Jesse F. Abrams, Ricarda Winkelmann, Boris Sakschewski, Sina Loriani, Ingo Fetzer, Sarah E. Cornell, Johan Rockström, and Timothy M. Lenton. 2022. "Exceeding 1.5°C global warming could trigger multiple climate tipping points." *Science*, 377(6611): eabn7950.
- **Auffhammer, Maximilian.** 2018. "Quantifying economic damages from climate change." *Journal of Economic Perspectives*, 32(4): 33–52.
- **Auffhammer, Maximilian.** 2022. "Climate adaptive response estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption." *Journal of Environmental Economics and Management*, 114: 102669.
- **Auffhammer, Maximilian, and Wolfram Schlenker.** 2014. "Empirical studies on agricultural impacts and adaptation." *Energy Economics*, 46: 555–561.
- **Auffhammer, Maximilian, Patrick Baylis, and Catherine H. Hausman.** 2017. "Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States." *Proceedings of the National Academy of Sciences*, 114(8): 1886–1891.
- **Auffhammer, Maximilian, Solomon M. Hsiang, Wolfram Schlenker, and Adam Sobel.** 2013. "Using weather data and climate model output in economic analyses of climate change." *Review of Environmental Economics and Policy*, 7(2): 181–198.
- **Ausubel, Jesse H.** 1991. "Does climate still matter?" *Nature*, 350(6320): 649–652.
- **Bakkensen, Laura A., and Lint Barrage.** 2022. "Going underwater? Flood risk belief heterogeneity and coastal home price dynamics." *Review of Financial Studies*, 35(8): 3666–3709.
- **Bakkensen, Laura A., and Lint Barrage.** 2025. "Climate shocks, cyclones, and economic growth: bridging the micro-macro gap." *The Economic Journal*, forthcoming.
- **Bakkensen, Laura, Toàn Phan, and Tsz-Nga Wong.** 2025. "Leveraging the Disagreement on Climate Change: Theory and Evidence." *Journal of Political Economy*, forthcoming.
- **Balboni, Claire.** 2025. "In harm's way? Infrastructure investments and the persistence of coastal cities." *American Economic Review*, 115(1): 77–116.
- **Balboni, Claire, Johannes Boehm, and Mazhar Waseem.** 2024. "Firm Adaptation and Production Networks: Structural Evidence from Extreme Weather Events in Pakistan." Working paper.

- **Baldauf, Markus, Lorenzo Garlappi, and Constantine Yannelis.** 2020. "Does climate change affect real estate prices? Only if you believe in it." *Review of Financial Studies*, 33(3): 1256–1295.
- **Baluja, Robert.** 2024. "Escape the heat: The dynamics of migration as adaptation to climate change." Job market paper.
- **Bansal, Ravi, and Marcelo Ochoa.** 2011. "Temperature, aggregate risk, and expected returns." National Bureau of Economic Research Working Paper 17575.
- **Bansal, Ravi, Dana Kiku, and Marcelo Ochoa.** 2016. "Price of long-run temperature shifts in capital markets." National Bureau of Economic Research Working Paper 22529.
- **Baqaee, David Rezza, and Emmanuel Farhi.** 2019. "The macroeconomic impact of microeconomic shocks: Beyond Hulten's theorem." *Econometrica*, 87(4): 1155–1203.
- **Bareille, François, and Raja Chakir.** 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis." *Journal of Environmental Economics and Management*, 119: 102822.
- **Bareille, François, and Raja Chakir.** 2024. "Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects." *American Journal of Agricultural Economics*, 106(3): 989–1019.
- **Barker, David.** 2022. "Temperature and U.S. Economic Growth: Comment on Colacito, Hoffmann, and Phan." *Econ Journal Watch*, 19(2): 176–189.
- **Barnett, Jon, and Saffron O'Neill.** 2010. "Maladaptation." *Global Environmental Change*, 20(2): 211–213.
- **Barnett, Michael, William Brock, and Lars Peter Hansen.** 2020. "Pricing uncertainty induced by climate change." *The Review of Financial Studies*, 33(3): 1024–1066.
- **Barrage, Lint, and William Nordhaus.** 2024. "Policies, projections, and the social cost of carbon: Results from the DICE-2023 model." *Proceedings of the National Academy of Sciences*, 121(13): e2312030121.
- **Barreca, Alan I.** 2012. "Climate change, humidity, and mortality in the United States." *Journal of Environmental Economics and Management*, 63(1): 19–34.
- Barreca, Alan, Karen Clay, Olivier Deschênes, Michael Greenstone, and Joseph S. Shapiro. 2016. "Adapting to climate change: The remarkable decline in the U.S. temperature-mortality relationship over the 20th century." *Journal of Political Economy*, 124(1): 105–159.

- **Bastien-Olvera, B A, F Granella, and F C Moore.** 2022. "Persistent effect of temperature on GDP identified from lower frequency temperature variability." *Environmental Research Letters*, 17(8): 084038.
- **Bastien-Olvera, Bernardo A., and Frances C. Moore.** 2020. "Use and non-use value of nature and the social cost of carbon." *Nature Sustainability*, 1–8.
- **Bastien-Olvera, Bernardo A., and Frances C. Moore.** 2022. "Climate impacts on natural capital: Consequences for the social cost of carbon." *Annual Review of Resource Economics*, 14(1): 515–532.
- **Baumol, William J.** 1972. "On taxation and the control of externalities." *The American Economic Review*, 62(3): 307–322.
- **Baylis, Patrick, and Judson Boomhower.** 2023. "The economic incidence of wildfire suppression in the United States." *American Economic Journal: Applied Economics*, 15(1): 442–473.
- **Bearpark, Tom, Dylan Hogan, and Solomon Hsiang.** 2025. "Data anomalies and the economic commitment of climate change." *Nature*, 644(8075): E7–E11.
- Behrer, A. P., R. J. Park, G. Wagner, C. M. Golja, and D. W. Keith. 2021. "Heat has larger impacts on labor in poorer areas." *Environmental Research Communications*, 3(9): 095001.
- **Bell, Michelle L., Antonio Gasparrini, and Georges C. Benjamin.** 2024. "Climate Change, Extreme Heat, and Health." *New England Journal of Medicine*, 390(19): 1793–1801.
- **Benveniste, Hélène, Michael Oppenheimer, and Marc Fleurbaey.** 2020. "Effect of border policy on exposure and vulnerability to climate change." *Proceedings of the National Academy of Sciences*, 117(43): 26692–26702.
- **Berlemann, Michael, and Max Friedrich Steinhardt.** 2017. "Climate Change, Natural Disasters, and Migration—a Survey of the Empirical Evidence." *CESifo Economic Studies*, 63(4): 353–385.
- **Bernstein, Asaf, Matthew T. Gustafson, and Ryan Lewis.** 2019. "Disaster on the horizon: The price effect of sea level rise." *Journal of Financial Economics*, 134(2): 253–272.
- Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton. 2022. "Food, Fibre, and Other Ecosystem Products." Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, , ed. H. O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K.

- Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama, 713–906. Cambridge, UK and New York, USA:Cambridge University Press.
- **Bilal, Adrien, and Diego R. Känzig.** 2024. "The macroeconomic impact of climate change: Global vs. local temperature." National Bureau of Economic Research Working Paper 32450.
- **Bilal, Adrien, and Esteban Rossi-Hansberg.** 2023. "Anticipating climate change across the United States." National Bureau of Economic Research Working Paper 31323.
- **Blanc, Elodie, and Wolfram Schlenker.** 2017. "The use of panel models in assessments of climate impacts on agriculture." *Review of Environmental Economics and Policy*, 11(2): 258–279.
- **Bleakley, Hoyt, and Sok Chul Hong.** 2017. "Adapting to the weather: Lessons from U.S. history." *The Journal of Economic History*, 77(3): 756–795.
- **Bosello, Francesco, Roberto Roson, and Richard S. J. Tol.** 2007. "Economy-wide estimates of the implications of climate change: Sea level rise." *Environmental and Resource Economics*, 37(3): 549–571.
- **Brock, William, Gustav Engström, and Anastasios Xepapadeas.** 2014. "Spatial climate-economic models in the design of optimal climate policies across locations." *European Economic Review*, 69: 78–103.
- **Brooks, Wesley R., and Stephen C. Newbold.** 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models." *Ecological Economics*, 105: 342–349.
- **Brown, James R., Matthew T. Gustafson, and Ivan T. Ivanov.** 2021. "Weathering cash flow shocks." *The Journal of Finance*, 76(4): 1731–1772.
- **Burke, Marshall, and Kyle Emerick.** 2016. "Adaptation to climate change: Evidence from US agriculture." *American Economic Journal: Economic Policy*, 8(3): 106–140.
- Burke, Marshall, Felipe González, Patrick Baylis, Sam Heft-Neal, Ceren Baysan, Sanjay Basu, and Solomon Hsiang. 2018. "Higher temperatures increase suicide rates in the United States and Mexico." *Nature Climate Change*, 8(8): 723–729.
- Burke, Marshall, Mustafa Zahid, Mariana C. M. Martins, Christopher W. Callahan, Richard Lee, Tumenkhusel Avirmed, Sam Heft-Neal, Mathew Kiang, Solomon M. Hsiang, and David Lobell. 2024. "Are we adapting to climate change?" National Bureau of Economic Research Working Paper 32985.

- **Burke, Marshall, Solomon M. Hsiang, and Edward Miguel.** 2015a. "Climate and conflict." *Annual Review of Economics*, 7(1): 577–617.
- **Burke, Marshall, Solomon M. Hsiang, and Edward Miguel.** 2015*b*. "Global non-linear effect of temperature on economic production." *Nature*, 527(7577): 235–239.
- Burke, M., M. Craxton, C. D. Kolstad, C. Onda, H. Allcott, E. Baker, L. Barrage, R. Carson, K. Gillingham, J. Graff-Zivin, M. Greenstone, S. Hallegatte, W. M. Hanemann, G. Heal, S. Hsiang, B. Jones, D. L. Kelly, R. Kopp, M. Kotchen, R. Mendelsohn, K. Meng, G. Metcalf, J. Moreno-Cruz, R. Pindyck, S. Rose, I. Rudik, J. Stock, and R. S. J. Tol. 2016. "Opportunities for advances in climate change economics." *Science*, 352(6283): 292–293.
- Burlig, Fiona, Amir Jina, Erin M. Kelley, Gregory V. Lane, and Harshil Sahai. 2024. "Long-Range Forecasts As Climate Adaptation: Experimental Evidence From Developing-Country Agriculture." National Bureau of Economic Research Working Paper 32173.
- **Burzyński, Micha I, Christoph Deuster, Frédéric Docquier, and Jaime de Melo.** 2022. "Climate Change, Inequality, and Human Migration." *Journal of the European Economic Association*, 20(3): 1145–1197.
- **Butler, Ethan E., and Peter Huybers.** 2013. "Adaptation of US maize to temperature variations." *Nature Climate Change*, 3(1): 68–72.
- Cai, Yongyang, and Thomas S. Lontzek. 2019. "The social cost of carbon with economic and climate risks." *Journal of Political Economy*, 127(6): 2684–2734.
- Cai, Yongyang, Timothy M. Lenton, and Thomas S. Lontzek. 2016. "Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction." *Nature Climate Change*, 6(5): 520–525.
- **Carleton, Tamma A.** 2017. "Crop-damaging temperatures increase suicide rates in India." *Proceedings of the National Academy of Sciences*, 114(33): 8746–8751.
- **Carleton, Tamma A., and Solomon M. Hsiang.** 2016. "Social and economic impacts of climate." *Science*, 353(6304): aad9837.
- Carleton, Tamma, Amir Jina, Michael Delgado, Michael Greenstone, Trevor Houser, Solomon Hsiang, Andrew Hultgren, Robert E Kopp, Kelly E Mccusker, Ishan Nath, James Rising, Ashwin Rode, Hee Kwon Seo, Arvid Viaene, Jiacan Yuan, and Alice Tianbo Zhang. 2022. "Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits." *Quarterly Journal of Economics*, 137(4): 2037–2105.

- **Carleton, Tamma, and Michael Greenstone.** 2022. "A guide to updating the US government's social cost of carbon." *Review of Environmental Economics and Policy*, 16(2): 196–218.
- Carleton, Tamma, Esther Duflo, B. Kelsey Jack, and Guglielmo Zappalà. 2024. "Adaptation to climate change." In *Handbook of the Economics of Climate Change*., ed. Lint Barrage, and Solomon Hsiang, 143–248. North-Holland.
- **Carney, Mark.** 2015. "Breaking the tragedy of the horizon—climate change and financial stability." Speech at Lloyd's of London:Bank of England.
- **Casey, Gregory, Stephie Fried, and Ethan Goode.** 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics." *IMF Economic Review*, 71(3): 688–718.
- **Castro-Vincenzi, Juanma.** 2024. "Climate hazards and resilience in the global car industry." Becker Friedman Institute for Economics Working Paper.
- Castro-Vincenzi, Juanma, Gaurav Khanna, Nicolas Morales, and Nitya Pandalai-Nayar. 2024. "Weathering the storm: Supply chains and climate risk." National Bureau of Economic Research Working Paper 32218.
- Cattaneo, Cristina, Michel Beine, Christiane J. Fröhlich, Dominic Kniveton, Inmaculada Martinez-Zarzoso, Marina Mastrorillo, Katrin Millock, Etienne Piguet, and Benjamin Schraven. 2019. "Human Migration in the Era of Climate Change." *Review of Environmental Economics and Policy*, 13(2): 189–206.
- **Chetty, Raj.** 2009. "Sufficient statistics for welfare analysis: a bridge between structural and reduced-form methods." *Annual Review of Economics*, 1(1): 451–488.
- Climate Impact Lab. 2023. "DSCIM User Manual, Version 09-2023." Technical Report. Version 09-2023.
- Cline, William R. 1996. "The impact of global warming on agriculture: Comment." *The American Economic Review*, 86(5): 1309–1311.
- **Cohen, François, Cameron J. Hepburn, and Alexander Teytelboym.** 2019. "Is natural capital really substitutable?" *Annual Review of Environment and Resources*, 44(1): 425–448.
- **Colacito, Riccardo, Bridget Hoffmann, and Toan Phan.** 2019. "Temperature and growth: a panel analysis of the United States." *Journal of Money, Credit and Banking*, 51(2-3): 313–368.

- **Conte, Bruno.** 2022. "Climate change and migration: The case of Africa." CESifo Working Paper 9948.
- Conte, Bruno, Klaus Desmet, Dávid Krisztián Nagy, and Esteban Rossi-Hansberg. 2021. "Local sectoral specialization in a warming world." *Journal of Economic Geography*, 21(4): 493–530.
- **Costinot, Arnaud, Dave Donaldson, and Cory Smith.** 2016. "Evolving comparative advantage and the impact of climate change in agricultural markets: Evidence from 1.7 million fields around the world." *Journal of Political Economy*, 124(1): 205–248.
- Cruz, José-Luis, and Esteban Rossi-Hansberg. 2024. "The economic geography of global warming." *The Review of Economic Studies*, 91(2): 899–939.
- **Damania, R., S. Desbureaux, and E. Zaveri.** 2020. "Does rainfall matter for economic growth? Evidence from global sub-national data (1990–2014)." *Journal of Environmental Economics and Management*, 102: 102335.
- **Darwin, Roy.** 1999. "The impact of global warming on agriculture: a Ricardian analysis: Comment." *The American Economic Review*, 89(4): 1049–1052.
- **Dasgupta, Partha.** 2008. "Discounting climate change." *Journal of Risk and Uncertainty*, 37(2-3): 141–169.
- **Davis, Lucas W., and Paul J. Gertler.** 2015. "Contribution of air conditioning adoption to future energy use under global warming." *Proceedings of the National Academy of Sciences*, 112(19): 5962–5967.
- **Deaton, Angus.** 2010. "Instruments, randomization, and learning about development." *Journal of Economic Literature*, 48(2): 424–455.
- **Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken.** 2009. "Temperature and income: Reconciling new cross-sectional and panel estimates." *American Economic Review Papers and Proceedings*, 99(2): 198–204.
- **Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken.** 2014. "What do we learn from the weather? The new climate-economy literature." *Journal of Economic Literature*, 52(3): 740–798.
- **Dell, Melissa, Benjamin Jones, and Benjamin Olken.** 2012. "Temperature shocks and economic growth: Evidence from the last half century." *American Economic Journal: Macroeconomics*, 4(3): 66–95.

- **Deryugina, Tatyana, and Solomon Hsiang.** 2017. "The marginal product of climate." National Bureau of Economic Research Working Paper 24072.
- **De Salvo, Maria, Diego Begalli, and Giovanni Signorello.** 2014. "The Ricardian analysis twenty years after the original model: Evolution, unresolved issues and empirical problems." *Journal of Development and Agricultural Economics*, 6(3): 124–131.
- **Deschenes, Olivier.** 2022. "The impact of climate change on mortality in the United States: Benefits and costs of adaptation." *Canadian Journal of Economics*, 55(3): 1227–1249.
- **Deschenes, Olivier, and Kyle C. Meng.** 2018. "Quasi-experimental methods in environmental economics: Opportunities and challenges." In *Handbook of Environmental Economics*. Vol. 4, , ed. Partha Dasgupta, Subhrendu K. Pattanayak, and V. Kerry Smith, 285–332. Elsevier.
- **Deschênes, Olivier, and Michael Greenstone.** 2007. "The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather." *American Economic Review*, 97(1): 354–385.
- **Desmet, Klaus, and Esteban Rossi-Hansberg.** 2015. "On the spatial economic impact of global warming." *Journal of Urban Economics*, 88: 16–37.
- **Desmet, Klaus, and Esteban Rossi-Hansberg.** 2024. "Climate change economics over time and space." *Annual Review of Economics*, 16: 271–304.
- **Desmet, Klaus, and Fernando Parro.** 2025. "Spatial Dynamics." National Bureau of Economic Research Working Paper 33443.
- **Desmet, Klaus, Dávid Krisztiá Nagy, and Esteban Rossi-Hansberg.** 2018. "The geography of development." *Journal of Political Economy*, 126(3): 903–983.
- Desmet, Klaus, Robert E. Kopp, Scott A. Kulp, Dávid Krisztián Nagy, Michael Oppenheimer, Esteban Rossi-Hansberg, and Benjamin H. Strauss. 2021. "Evaluating the economic cost of coastal flooding." *American Economic Journal: Macroeconomics*, 13(2): 444–486.
- **Diaz, Delavane, and Frances Moore.** 2017. "Quantifying the economic risks of climate change." *Nature Climate Change*, 7(11): 774–782.
- **Dietz, Simon.** 2024. "Introduction to integrated assessment modeling of climate change." In *Handbook of the Economics of Climate Change*. Vol. 1, , ed. Lint Barrage, and Solomon Hsiang, 1–51. North-Holland.

- **Dietz, Simon, James Rising, Thomas Stoerk, and Gernot Wagner.** 2021. "Economic impacts of tipping points in the climate system." *Proceedings of the National Academy of Sciences*, 118(34): e2103081118.
- **Dillender, Marcus.** 2021. "Climate Change and Occupational Health: Are There Limits to Our Ability to Adapt?" *Journal of Human Resources*, 56(1): 184–224. Section: Articles.
- **Dingel, Jonathan I., and Kyle C. Meng.** 2025. "Spatial correlation, trade, and inequality: Evidence from the global climate." Working Paper.
- **Dinku, Tufa.** 2019. "Chapter 7 Challenges with availability and quality of climate data in Africa." In *Extreme Hydrology and Climate Variability*., ed. Assefa M. Melesse, Wossenu Abtew, and Gabriel Senay, 71–80. Elsevier.
- **Doney, Scott C., Victoria J. Fabry, Richard A. Feely, and Joan A. Kleypas.** 2009. "Ocean Acidification: The Other CO2 Problem." *Annual Review of Marine Science*, 1: 169–192.
- **Downey, Mitch, Nelson Lind, and Jeffrey G. Shrader.** 2023. "Adjusting to rain before it falls." *Management Science*, 69(12): 7399–7422.
- **Drupp, Moritz A., and Martin C. Hänsel.** 2021. "Relative prices and climate policy: How the scarcity of nonmarket goods drives policy evaluation." *American Economic Journal: Economic Policy*, 13(1): 168–201.
- **Drupp, Moritz A., Ulrike Kornek, Jasper N. Meya, and Lutz Sager.** 2025. "The Economics of Inequality and the Environment." *Journal of Economic Literature*, 63(3): 840–74.
- **Du Puy, Tristan, and Jeffrey G Shrader.** 2024. "Costs of Climate Adaptation: Evidence From French Agriculture." *Working Paper*, 90.
- Easterling, William E., Pierre R. Crosson, Norman J. Rosenberg, Mary S. McKenney, Laura A. Katz, and Kathleen M. Lemon. 1993. "Agricultural impacts of and responses to climate change in the Missouri-Iowa-Nebraska-Kansas (MINK) region." *Climatic Change*, 24(1-2): 23–61.
- **Einav, Liran, and Jonathan Levin.** 2010. "Empirical industrial organization: a progress report." *Journal of Economic Perspectives*, 24(2): 145–162.
- Engle, Robert F., Stefano Giglio, Bryan Kelly, Heebum Lee, and Johannes Stroebel. 2020. "Hedging climate change news." *The Review of Financial Studies*, 33(3): 1184–1216.

- **EPA.** 2023. "Supplementary Material for the Regulatory Impact Analysis for the Final Rulemaking, "Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review"; EPA Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances." Environmental Protection Agency. Docket ID No. EPA-HQ-OAR-2021-0317.
- **Fankhauser, Sam.** 2017. "Adaptation to climate change." *Annual Review of Resource Economics*, 9(1): 209–230.
- **Fankhauser, Samuel.** 2010. "The costs of adaptation." WIREs Climate Change, 1(1): 23–30.
- **Fankhauser, Samuel, and Richard SJ Tol.** 1996. "Climate change costs: Recent advancements in the economic assessment." *Energy Policy*, 24(7): 665–673.
- **Fankhauser, Samuel, Joel B. Smith, and Richard S. J. Tol.** 1999. "Weathering climate change: some simple rules to guide adaptation decisions." *Ecological Economics*, 30(1): 67–78.
- **Ferreira, Susana.** 2024. "Extreme Weather Events and Climate Change: Economic Impacts and Adaptation Policies." *Annual Review of Resource Economics*, 16(Volume 16, 2024): 207–231. Publisher: Annual Reviews.
- **Fisher, Anthony C., and W. Michael Hanemann.** 1993. "Assessing climate change risks: Valuation of effects." In *Assessing Surprises and Nonlinearities in Greenhouse Warming.*, ed. J. Darmstadter, and M. Toman. Washington, D.C.:Resources for the Future.
- **Fisher, Anthony C., W. Michael Hanemann, Michael J. Roberts, and Wolfram Schlenker.** 2012. "The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather: Comment." *American Economic Review*, 102(7): 3749–3760.
- **Fried, Stephie.** 2022. "Seawalls and stilts: a quantitative macro study of climate adaptation." *The Review of Economic Studies*, 89(6): 3303–3344.
- **Gaigné, Carl, and Christophe Gouel.** 2022. "Trade in agricultural and food products." In *Handbook of Agricultural Economics*. Vol. 6, , ed. Christopher B. Barrett, and David R. Just, 4845–4931. Elsevier.
- **Giglio, Stefano, Bryan Kelly, and Johannes Stroebel.** 2021. "Climate finance." *Annual Review of Financial Economics*, 13: 15–36.
- **GISTEMP Team.** 2025. "GISS Surface Temperature Analysis (GISTEMP), version 4." https://data.giss.nasa.gov/gistemp/, Accessed: 2025-09-30.

- Goldsmith-Pinkham, Paul, Matthew T. Gustafson, Ryan C. Lewis, and Michael Schwert. 2023. "Sea-level rise exposure and municipal bond yields." *The Review of Financial Studies*, 36(11): 4588–4635.
- **Gollier, Christian.** 2010. "Ecological discounting." *Journal of Economic Theory*, 145(2): 812–829.
- **Gollier, Christian.** 2013. *Pricing the planet's future: The economics of discounting in an uncertain world.* Princeton: Princeton University Press.
- **Gollin, Douglas.** 2011. "Climate Change and Technological Innovation in Agriculture: Adaptation through Science." In *Handbook on Climate Change and Agriculture*., ed. Ariel Dinar, and Robert Mendelsohn, 382–401. Edward Elgar Publishing.
- Gopalakrishnan, Sathya, Craig E. Landry, Martin D. Smith, and John C. Whitehead. 2016. "Economics of Coastal Erosion and Adaptation to Sea Level Rise." *Annual Review of Resource Economics*, 8(Volume 8, 2016): 119–139. Publisher: Annual Reviews.
- **Gouel, Christophe.** 2025. "Measuring climate change impacts on agriculture: An equilibrium perspective on supply-side approaches." *Journal of the Association of Environmental and Resource Economists*, 12(1): 181–220.
- **Gouel, Christophe, and David Laborde.** 2021. "The crucial role of domestic and international market-mediated adaptation to climate change." *Journal of Environmental Economics and Management*, 106: 102408.
- **Graff Zivin, Joshua, and Matthew Neidell.** 2014. "Temperature and the allocation of time: Implications for climate change." *Journal of Labor Economics*, 32(1): 1–26.
- **Graff Zivin, Joshua, Solomon M. Hsiang, and Matthew Neidell.** 2018. "Temperature and human capital in the short and long run." *Journal of the Association of Environmental and Resource Economists*, 5(1): 77–105.
- **Greenstone, Michael.** 2021. "Comments and Discussion on "The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections of Population, GDP, Emissions, and Discount Rates"." *Brookings Papers on Economic Activity*, Fall: 276–306.
- **Greenstone, Michael, Elizabeth Kopits, and Ann Wolverton.** 2013. "Developing a social cost of carbon for US regulatory analysis: a methodology and interpretation." *Review of Environmental Economics and Policy*, 7(1): 23–46.

- **Guo, Christopher, and Christopher Costello.** 2013. "The value of adaption: Climate change and timberland management." *Journal of Environmental Economics and Management*, 65(3): 452–468.
- **Haaland, Ingar, Christopher Roth, and Johannes Wohlfart.** 2023. "Designing information provision experiments." *Journal of Economic Literature*, 61(1): 3–40.
- **Hagerty, Nick.** 2022. "Adaptation to surface water scarcity in irrigated agriculture." Montana State University Working paper.
- **Hanemann, W. Michael.** 2000. "Adaptation and its measurement." *Climatic Change*, 45(3-4): 571–581.
- **Hanley, Nick, and Charles Perrings.** 2019. "The economic value of biodiversity." *Annual Review of Resource Economics*, 11(1): 355–375.
- Harding, Anthony, Juan Moreno-Cruz, Martin F. Quaas, Wilfried Rickels, and Sjak Smulders. 2023. "Climate Damages in Convergence-Consistent Growth Projections." Working paper.
- **Heal, Geoffrey.** 2009a. "Climate economics: a meta-review and some suggestions for future research." *Review of Environmental Economics and Policy*, 3(1): 4–21.
- **Heal, Geoffrey.** 2009b. "The economics of climate change: a post-Stern perspective." *Climatic Change*, 96(3): 275–297.
- **Heal, Geoffrey.** 2017. "The economics of the climate." *Journal of Economic Literature*, 55(3): 1046–1063.
- **Heal, Geoffrey, and Antony Millner.** 2014. "Uncertainty and decision making in climate change economics." *Review of Environmental Economics and Policy*, 8(1): 120–137.
- **Heckman, James J.** 2000. "Causal parameters and policy analysis in economics: a twentieth century retrospective." *The Quarterly Journal of Economics*, 115(1): 45–97.
- **Heutel, Garth, Nolan H. Miller, and David Molitor.** 2021. "Adaptation and the mortality effects of temperature across U.S. climate regions." *Review of Economics and Statistics*, 103(4): 740–753.
- **Hoel, Michael, and Thomas Sterner.** 2007. "Discounting and relative prices." *Climatic Change*, 84(3): 265–280.
- **Hogan, Dylan, and Wolfram Schlenker.** 2024. "Chapter 2 empirical approaches to climate change impact quantification." In *Handbook of the Economics of Climate Change*. Vol. 1, , ed. Lint Barrage, and Solomon Hsiang, 53–111. North-Holland.

- **Hornbeck, Richard, and Pinar Keskin.** 2014. "The historically evolving impact of the ogallala aquifer: Agricultural adaptation to groundwater and drought." *American Economic Journal: Applied Economics*, 6(1): 190–219.
- **Howard, Peter H., and Thomas Sterner.** 2017. "Few and not so far between: a meta-analysis of climate damage estimates." *Environmental and Resource Economics*, 68(1): 197–225.
- **Howard, Peter H., and Thomas Sterner.** 2025. "Methodology Matters: A Careful Meta-Analysis of Climate Damages." *Environmental and Resource Economics*.
- **Howard, Peter Harrison, and Derek Sylvan.** 2020. "Wisdom of the experts: Using survey responses to address positive and normative uncertainties in climate-economic models." *Climatic Change*, 162(2): 213–232.
- **Hsiang, Solomon.** 2016. "Climate econometrics." *Annual Review of Resource Economics*, 8(1): 43–75.
- **Hsiang, Solomon, and Robert E. Kopp.** 2018. "An economist's guide to climate change science." *Journal of Economic Perspectives*, 32(4): 3–32.
- **Hsiang, Solomon M., Marshall Burke, and Edward Miguel.** 2013. "Quantifying the influence of climate on human conflict." *Science*, 341(6151): 1235367.
- Hsiao, Allan. 2023. "Sea level rise and urban adaptation in Jakarta." Technical Report.
- **Hsiao, Allan, Jacob Moscona, and Karthik Sastry.** 2024. "Food policy in a warming world." National Bureau of Economic Research Working Paper 32539.
- Hultgren, Andrew, Tamma Carleton, Michael Delgado, Diana R. Gergel, Michael Greenstone, Trevor Houser, Solomon Hsiang, Amir Jina, Robert E. Kopp, Steven B. Malevich, Kelly E. McCusker, Terin Mayer, Ishan Nath, James Rising, Ashwin Rode, and Jiacan Yuan. 2025. "Impacts of climate change on global agriculture accounting for adaptation." Nature, 642(8068): 644–652.
- **Huynh, Thanh, and Ying Xia.** 2021. "Climate change news risk and corporate bond returns." *Journal of Financial and Quantitative Analysis*, 56(6): 1985–2009.
- **Imbens, Guido W.** 2010. "Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009)." *Journal of Economic Literature*, 48(2): 399–423.

- **IPCC.** 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge, UK and New York, USA:Cambridge University Press.
- **IPCC.** 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Groups I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, USA:Cambridge University Press.
- **IPCC.** 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, USA:Cambridge University Press.
- **IPCC.** 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report, Cambridge University Press.
- **Jensen, Svenn, and Christian Traeger.** 2024. "Uncertainty in climate-economic modeling." In *Handbook of the Economics of Climate Change*. Vol. 1, , ed. Lint Barrage, and Solomon Hsiang, 351–423. North-Holland.
- **Kahn, Matthew E.** 2015. "Climate change adaptation: Lessons from urban economics." *Strategic Behavior and the Environment*, 5(1): 1–30.
- Kahn, Matthew E., Kamiar Mohaddes, Ryan N.C. Ng, M. Hashem Pesaran, Mehdi Raissi, and Jui-Chung Yang. 2021. "Long-term macroeconomic effects of climate change: a cross-country analysis." *Energy Economics*, 104: 105624.
- **Kalkuhl, Matthias, and Leonie Wenz.** 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions." *Journal of Environmental Economics and Management*, 103: 102360.
- **Kane, Sally, John Reilly, and James Tobey.** 1992. "An empirical study of the economic effects of climate change on world agriculture." *Climatic Change*, 21(1): 17–35.
- **Karlsson, Martin, and Nicolas R. Ziebarth.** 2018. "Population health effects and health-related costs of extreme temperatures: Comprehensive evidence from Germany." *Journal of Environmental Economics and Management*, 91: 93–117.
- **Kelleher, J. Paul.** 2025. The Social Cost of Carbon: Ethics and the Limits of Climate Change Economics. New York, NY:Oxford University Press.

- **Kelly, David L., and Charles D. Kolstad.** 1999. "Integrated assessment models for climate change control." In *International Yearbook of Environmental and Resource Economics 1999/2000: A Survey of Current Issues.*, ed. Henk Folmer, and Tom Tietenberg, 171–197. Cheltenham, UK:Edward Elgar.
- **Kelly, David L., and Renato Molina.** 2023. "Adaptation infrastructure and its effects on property values in the face of climate risk." *Journal of the Association of Environmental and Resource Economists*, 10(6): 1405–1438.
- **Kelly, David L., Charles D. Kolstad, and Glenn T. Mitchell.** 2005. "Adjustment costs from environmental change." *Journal of Environmental Economics and Management*, 50(3): 468–495.
- **Keys, Benjamin J, and Philip Mulder.** 2020. "Neglected no more: Housing markets, mortgage lending, and sea level rise." National Bureau of Economic Research Working Paper 27930.
- **Kleven, Henrik J.** 2021. "Sufficient statistics revisited." *Annual Review of Economics*, 13: 515–538.
- **Kokoski, Mary F., and V. Kerry Smith.** 1987. "A general equilibrium analysis of partial-equilibrium welfare measures: The case of climate change." *The American Economic Review*, 77(3): 331–341.
- **Kolstad, Charles D., and Frances C. Moore.** 2020. "Estimating the economic impacts of climate change using weather observations." *Review of Environmental Economics and Policy*, 14(1): 1–24.
- **Kopits, Elizabeth, Alex Marten, and Ann Wolverton.** 2014. "Incorporating 'catastrophic' climate change into policy analysis." *Climate Policy*, 14(5): 637–664.
- Kopits, Elizabeth, Wade Davis, Charles Griffiths, Alex Marten, Al McGartland, Bryan Parthum, David Smith, and Elizabeth Spink. 2025. "The social cost of greenhouse gases and its use in U.S. federal policy." In *Encyclopedia of Energy, Natural Resource, and Environmental Economics (Second Edition)*., ed. Tommy Lundgren, Moriah Bostian, and Shunsuke Managi, 275–288. Oxford:Elsevier.
- **Kotz, Maximilian, Anders Levermann, and Leonie Wenz.** 2022. "The effect of rainfall changes on economic production." *Nature*, 601(7892): 223–227.
- Kotz, Maximilian, Leonie Wenz, Annika Stechemesser, Matthias Kalkuhl, and Anders Levermann. 2021. "Day-to-day temperature variability reduces economic growth." *Nature Climate Change*, 1–7.

- **Kousky, Carolyn, Erzo F. P. Luttmer, and Richard J. Zeckhauser.** 2006. "Private investment and government protection." *Journal of Risk and Uncertainty*, 33(1-2): 73–100.
- **Krusell, Per, and Jr. Smith, Anthony A.** 2022. "Climate change around the world." National Bureau of Economic Research Working Paper 30338.
- **Krutilla, John V.** 1967. "Conservation reconsidered." *The American Economic Review*, 57(4): 777–786.
- **Leamer, Edward E.** 2010. "Tantalus on the road to asymptopia." *Journal of Economic Perspectives*, 24(2): 31–46.
- **Lemoine, Derek.** 2022. "Informationally efficient climate policy: Designing markets to measure and price externalities." National Bureau of Economic Research Working Paper 30535.
- **Lemoine, Derek.** 2023. "Estimating the consequences of climate change from variation in weather." National Bureau of Economic Research Working Paper 25008.
- Lemoine, Derek. 2025. "Climate change has already made the United States poorer." Preprint.
- **Lemoine, Derek, and Christian P. Traeger.** 2016. "Economics of tipping the climate dominoes." *Nature Climate Change*, 6(5): 514–519.
- **Lemoine, Derek, and Christian Traeger.** 2014. "Watch your step: Optimal policy in a tipping climate." *American Economic Journal: Economic Policy*, 6(1): 137–166.
- **Lemoine, Derek, and Ivan Rudik.** 2017. "Managing climate change under uncertainty: Recursive integrated assessment at an inflection point." *Annual Review of Resource Economics*, 9(1): 117–142.
- **Lemoine, Derek, and Sarah Kapnick.** 2016. "A top-down approach to projecting market impacts of climate change." *Nature Climate Change*, 6(1): 51–55.
- **Lenssen, Nathan, Gavin A. Schmidt, Michael Hendrickson, Peter Jacobs, Matthew J. Menne, and Reto Ruedy.** 2024. "A NASA GISTEMPv4 Observational Uncertainty Ensemble." *Journal of Geophysical Research: Atmospheres*, 129(17): e2023JD040179. _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023JD040179.
- Lenton, Timothy M., Hermann Held, Elmar Kriegler, Jim W. Hall, Wolfgang Lucht, Stefan Rahmstorf, and Hans Joachim Schellnhuber. 2008. "Tipping elements in the earth's climate system." *Proceedings of the National Academy of Sciences*, 105(6): 1786–1793.

- **Lewandrowski, J. K., and R. J. Brazee.** 1993. "Farm programs and climate change." *Climatic Change*, 23(1): 1–20.
- **Li, Chuan-Zhong, Anne-Sophie Crépin, and Therese Lindahl.** 2024. "The Economics of Tipping Points: Some Recent Modeling and Experimental Advances." *International Review of Environmental and Resource Economics*, 18(4): 385–442.
- **Linsenmeier, Manuel.** 2023. "Temperature variability and long-run economic development." *Journal of Environmental Economics and Management*, 121: 102840.
- **Liu, Tianzi, and Zebang Xu.** 2025. "The (mis)allocation channel of climate change: Evidence from global firm-level microdata." Working paper.
- **Li, Yating, William A. Pizer, and Libo Wu.** 2019. "Climate change and residential electricity consumption in the Yangtze river delta, China." *Proceedings of the National Academy of Sciences*, 116(2): 472–477.
- **Mahoney, Neale.** 2022. "Principles for combining descriptive and model-based analysis in applied microeconomics research." *Journal of Economic Perspectives*, 36(3): 211–222.
- **Massetti, Emanuele, and Robert Mendelsohn.** 2018. "Measuring climate adaptation: Methods and evidence." *Review of Environmental Economics and Policy*, 12(2): 324–341.
- **Mathes, Sophie M.** 2025. "The Dynamics of Residential Sorting and Health: Implications of Climate Change in the United States." *International Economic Review*, 66(2): 711–756.
- **Mendelsohn, Robert.** 2019. "An examination of recent revealed preference valuation methods and results." *Review of Environmental Economics and Policy*, 13(2): 267–282.
- Mendelsohn, Robert O., and Ariel Dinar. 2009. Climate Change and Agriculture: An Economic Analysis of Global Impacts, Adaptation and Distributional Effects. Cheltenham UK and Northamption USA:Edward Elgar Publishing.
- **Mendelsohn, R, WD Nordhaus, and Daigee Shaw.** 1994. "The impact of global warming on agriculture: a Ricardian analysis." *American Economic Review*, 84(4): 753–771.
- Metcalf, Gilbert E., and James H. Stock. 2017. "Integrated assessment models and the social cost of carbon: A review and assessment of U.S. experience." *Review of Environmental Economics and Policy*, 11(1): 80–99.
- **Millner, Antony, and Daniel Heyen.** 2021. "Prediction: The long and the short of it." *American Economic Journal: Microeconomics*, 13(1): 374–398.

- **Millner, Antony, and Geoffrey Heal.** 2023. "Choosing the future: Markets, ethics, and rapprochement in social discounting." *Journal of Economic Literature*, 61(3): 1037–1087.
- **Millock, Katrin.** 2015. "Migration and Environment." *Annual Review of Resource Economics*, 7(Volume 7, 2015): 35–60.
- **Missirian, Anouch, and Wolfram Schlenker.** 2017. "Asylum applications respond to temperature fluctuations." *Science*, 358(6370): 1610–1614.
- Moore, Frances C., Moritz A. Drupp, James Rising, Simon Dietz, Ivan Rudik, and Gernot Wagner. 2024. "Synthesis of evidence yields high social cost of carbon due to structural model variation and uncertainties." *Proceedings of the National Academy of Sciences*, 121(52): e2410733121.
- **Moore, Frances C., Uris Baldos, Thomas Hertel, and Delavane Diaz.** 2017. "New science of climate change impacts on agriculture implies higher social cost of carbon." *Nature Communications*, 8(1): 1607.
- **Moscona, Jacob, and Karthik A Sastry.** 2023. "Does directed innovation mitigate climate damage? Evidence from U.S. agriculture." *The Quarterly Journal of Economics*, 138(2): 637–701.
- **Mullins, Jamie T., and Corey White.** 2020. "Can access to health care mitigate the effects of temperature on mortality?" *Journal of Public Economics*, 191: 104259.
- **Mérel, Pierre, Emmanuel Paroissien, and Matthew Gammans.** 2024. "Sufficient statistics for climate change counterfactuals." *Journal of Environmental Economics and Management*, 124: 102940.
- Müller, Karsten, Chenzi Xu, Mohamed Lehbib, and Ziliang Chen. 2025. "The Global Macro Database: A New International Macroeconomic Dataset."
- **Nakamura, Emi, and Jón Steinsson.** 2018. "Identification in macroeconomics." *Journal of Economic Perspectives*, 32(3): 59–86.
- **Nath, Ishan.** 2025. "Climate change, the food problem, and the challenge of adaptation through sectoral reallocation." *Journal of Political Economy*, 133(6): 1705–1756.
- Nath, Ishan B., Valerie A. Ramey, and Peter J. Klenow. 2024. "How much will global warming cool global growth?" National Bureau of Economic Research Working Paper 32761.

- National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, D.C.:National Academies Press.
- **Newell, Richard G., Brian C. Prest, and Steven E. Sexton.** 2021. "The GDP-temperature relationship: Implications for climate change damages." *Journal of Environmental Economics and Management*, 108: 102445.
- **Nguyen, Duc Duy, Steven Ongena, Shusen Qi, and Vathunyoo Sila.** 2022. "Climate change risk and the cost of mortgage credit." *Review of Finance*, 26(6): 1509–1549.
- **Nordhaus, WD, and Zili Yang.** 1996. "A regional dynamic general-equilibrium model of alternative climate-change strategies." *American Economic Review*, 86(4): 741–765.
- **Nordhaus, William.** 2013. "Integrated economic and climate modeling." In *Handbook of Computable General Equilibrium Modeling*. Vol. 1, , ed. Peter B. Dixon, and Dale W. Jorgenson, 1069–1131. North Holland, Elsevier B.V.
- **Nordhaus, William.** 2014. "Estimates of the social cost of carbon: Concepts and results from the DICE-2013R model and alternative approaches." *Journal of the Association of Environmental and Resource Economists*, 1(1/2): 273–312.
- **Nordhaus, William.** 2019*a*. "Climate change: The ultimate challenge for economics." *American Economic Review*, 109(6): 1991–2014.
- **Nordhaus, William.** 2019b. "Economics of the disintegration of the Greenland ice sheet." *Proceedings of the National Academy of Sciences*, 116(25): 12261–12269.
- **Nordhaus, William D.** 1991. "To slow or not to slow: The economics of the greenhouse effect." *The Economic Journal*, 101(407): 920–937.
- **Nordhaus, William D.** 1992. "An optimal transition path for controlling greenhouse gases." *Science*, 258(5086): 1315–1319.
- **Nordhaus, William D.** 2006. "Geography and macroeconomics: New data and new findings." *Proceedings of the National Academy of Sciences of the United States of America*, 103(10): 3510–3517.
- **Obolensky, Marguerite.** 2024. "Protect or Prepare? Crop Insurance and Adaptation in a Changing Climate." *Working Paper*.

- **Olmstead, Alan L., and Paul W. Rhode.** 2008. *Creating abundance: Biological innovation and american agricultural development.* New York, NY:Cambridge University Press.
- Olmstead, Alan L., and Paul W. Rhode. 2011. "Responding to climatic challenges: Lessons from U.S. agricultural development." In *The Economics of Climate Change: Adaptations Past and Present.*, ed. Gary D. Libecap, and Richard H. Steckel, 169–194. University of Chicago Press.
- **Ortiz-Bobea, Ariel.** 2021. "The empirical analysis of climate change impacts and adaptation in agriculture." In *Handbook of Agricultural Economics*. Vol. 5, 3981–4073. Elsevier.
- Ortiz-Bobea, Ariel, Toby R. Ault, Carlos M. Carrillo, Robert G. Chambers, and David B. Lobell. 2021. "Anthropogenic climate change has slowed global agricultural productivity growth." *Nature Climate Change*, 11(4): 306–312.
- **Painter, Marcus.** 2020. "An inconvenient cost: The effects of climate change on municipal bonds." *Journal of Financial Economics*, 135(2): 468–482.
- **Palagi, Elisa, Matteo Coronese, Francesco Lamperti, and Andrea Roventini.** 2022. "Climate change and the nonlinear impact of precipitation anomalies on income inequality." *Proceedings of the National Academy of Sciences*, 119(43): e2203595119.
- **Pankratz, Nora M. C., and Christoph M. Schiller.** 2024. "Climate change and adaptation in global supply-chain networks." *Review of Financial Studies*, 37(6): 1729–1777.
- **Park, R. Jisung, A. Patrick Behrer, and Joshua Goodman.** 2021. "Learning is inhibited by heat exposure, both internationally and within the United States." *Nature Human Behaviour*, 5(1): 19–27.
- Park, R. Jisung, Joshua Goodman, Michael Hurwitz, and Jonathan Smith. 2020. "Heat and learning." *American Economic Journal: Economic Policy*, 12(2): 306–339.
- **Phan, Toàn, and Felipe Schwartzman.** 2024. "Climate defaults and financial adaptation." *European Economic Review*, 170: 104866.
- **Pindyck, Robert S.** 2007. "Uncertainty in environmental economics." *Review of Environmental Economics and Policy*, 1(1): 45–65.
- **Pindyck, Robert S.** 2013. "Climate change policy: What do the models tell us?" *Journal of Economic Literature*, 51(3): 860–872.
- **Pindyck, Robert S.** 2019. "The social cost of carbon revisited." *Journal of Environmental Economics and Management*, 94: 140–160.

- Prakash, Divya, Mehdi Nemati, Ariel Dinar, Cory Struthers, Scott Mackenzie, and Matthew S. Shugart. 2024. "Advancements to the Ricardian analysis in the past quarter of the century." *Climate Change Economics*, 15(3): 2350031.
- **Proctor, Jonathan, Angela Rigden, Duo Chan, and Peter Huybers.** 2022. "More accurate specification of water supply shows its importance for global crop production." *Nature Food*, 3(9): 753–763.
- **Pérez-González, Francisco, and Hayong Yun.** 2013. "Risk management and firm value: Evidence from weather derivatives." *The Journal of Finance*, 68(5): 2143–2176.
- **Quiggin, John, and John Horowitz.** 2003. "Costs of adjustment to climate change." *Australian Journal of Agricultural and Resource Economics*, 47(4): 429–446.
- **Quiggin, John, and John K Horowitz.** 1999. "The impact of global warming on agriculture: a Ricardian analysis: Comment." *American Economic Review*, 89(4): 1044–1045.
- **Reilly, John.** 2011. "The Role of Growth and Trade in Agricultural Adaptation to Environmental Change." In *Handbook on Climate Change and Agriculture*., ed. Ariel Dinar, and Robert Mendelsohn, 230–268. Edward Elgar Publishing.
- **Reilly, John, and Neil Hohmann.** 1993. "Climate change and agriculture: The role of international trade." *The American Economic Review Papers and Proceedings*, 83(2): 306–312.
- **Reilly, John, Neil Hohmann, and Sally Kane.** 1994. "Climate change and agricultural trade: Who benefits, who loses?" *Global Environmental Change*, 4(1): 24–36.
- Rennert, Kevin, Frank Errickson, Brian C. Prest, Lisa Rennels, Richard G. Newell, William Pizer, Cora Kingdon, Jordan Wingenroth, Roger Cooke, Bryan Parthum, David Smith, Kevin Cromar, Delavane Diaz, Frances C. Moore, Ulrich K. Müller, Richard J. Plevin, Adrian E. Raftery, Hana Ševčíková, Hannah Sheets, James H. Stock, Tammy Tan, Mark Watson, Tony E. Wong, and David Anthoff. 2022. "Comprehensive evidence implies a higher social cost of CO2." *Nature*, 610(7933): 687–692.
- **Rising, James, and Naresh Devineni.** 2020. "Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5." *Nature Communications*, 11(1): 4991.
- **Roberts, Michael J., and Wolfram Schlenker.** 2010. "Why climate change impacts on agriculture could be economically substantial." In *Is Economic Growth Sustainable?*. *IEA Conference Volume*, , ed. Geoffrey Heal, 47–75. Palgrave Macmillan.

- Rode, Ashwin, Tamma Carleton, Michael Delgado, Michael Greenstone, Trevor Houser, Solomon Hsiang, Andrew Hultgren, Amir Jina, Robert E. Kopp, Kelly E. McCusker, Ishan Nath, James Rising, and Jiacan Yuan. 2021. "Estimating a social cost of carbon for global energy consumption." *Nature*, 598(7880): 308–314.
- **Rosenzweig, Cynthia, and Ana Iglesias,** ed. 1994. *Implications of climate change for international agriculture: Crop modeling study.* Washington, DC:United States Environmental Protection Agency.
- **Rosenzweig, Cynthia, and Martin L. Parry.** 1994. "Potential impact of climate change on world food supply." *Nature*, 367(6459): 133–138.
- **Rudik, Ivan.** 2020. "Optimal climate policy when damages are unknown." *American Economic Journal: Economic Policy*, 12(2): 340–373.
- Rudik, Ivan, Gary Lyn, Weiliang Tan, and Ariel Ortiz-Bobea. 2022. "The economic effects of climate change in dynamic spatial equilibrium." Cornell University Working paper.
- **Schelling, Thomas C.** 1992. "Some economics of global warming." *American Economic Review*, 82(1): 1–17.
- **Schipper, E. Lisa F.** 2020. "Maladaptation: When adaptation to climate change goes very wrong." *One Earth*, 3(4): 409–414.
- **Schlenker, Wolfram, and Charles A. Taylor.** 2021. "Market expectations of a warming climate." *Journal of Financial Economics*, 142(2): 627–640.
- **Schlenker, Wolfram, and David B Lobell.** 2010. "Robust negative impacts of climate change on African agriculture." *Environmental Research Letters*, 5(1): 014010.
- **Schlenker, Wolfram, and Michael J. Roberts.** 2006. "Nonlinear effects of weather on corn yields." *Applied Economic Perspectives and Policy*, 28(3): 391–398.
- **Schlenker, Wolfram, and Michael J. Roberts.** 2009. "Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change." *Proceedings of the National Academy of Sciences*, 106(37): 15594–15598.
- Schlenker, Wolfram, Michael J. Roberts, and David B. Lobell. 2013. "U.S. maize adaptability." *Nature Climate Change*, 3(8): 690–691.

- Schlenker, Wolfram, Michael W. Hanemann, and Anthony C. Fisher. 2005. "Will U.S. agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach." *American Economic Review*, 95(1): 395–406.
- **Schötz, Christof.** 2025. "Spatial correlation in economic analysis of climate change." *Nature*, 644(8076): E27–E30.
- **Severen, Christopher, Christopher Costello, and Olivier Deschênes.** 2018. "A forward-looking Ricardian approach: Do land markets capitalize climate change forecasts?" *Journal of Environmental Economics and Management*, 89: 235–254.
- **Shrader, Jeffrey.** 2023. "Improving Climate Damage Estimates by Accounting for Adaptation." *Working Paper*.
- **Shrader, Jeffrey G., Laura Bakkensen, and Derek Lemoine.** 2023. "Fatal errors: The mortality value of accurate weather forecasts." National Bureau of Economic Research Working Paper 31361.
- **Sinha, Paramita, Martha Caulkins, and Maureen Cropper.** 2021. "The value of climate amenities: A comparison of hedonic and discrete choice approaches." *Journal of Urban Economics*, 126: 103371.
- **Sinha, Paramita, Martha L. Caulkins, and Maureen L. Cropper.** 2018. "Household location decisions and the value of climate amenities." *Journal of Environmental Economics and Management*, 92: 608–637.
- Sloat, Lindsey L., Steven J. Davis, James S. Gerber, Frances C. Moore, Deepak K. Ray, Paul C. West, and Nathaniel D. Mueller. 2020. "Climate adaptation by crop migration." *Nature Communications*, 11(1): 1–9.
- **Somanathan, E., Rohini Somanathan, Anant Sudarshan, and Meenu Tewari.** 2021. "The impact of temperature on productivity and labor supply: Evidence from Indian manufacturing." *Journal of Political Economy*, 129(6): 1797–1827.
- **Sterner, Thomas, and U. Martin Persson.** 2008. "An even sterner review: Introducing relative prices into the discounting debate." *Review of Environmental Economics and Policy*, 2(1): 61–76.
- **Taylor, Karl E., Ronald J. Stouffer, and Gerald A. Meehl.** 2012. "An overview of CMIP5 and the experiment design." *Bulletin of the American Meteorological Society*, 93(4): 485–498.

- **Tebaldi, Claudia, and Reto Knutti.** 2007. "The use of the multi-model ensemble in probabilistic climate projections." *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 365(1857): 2053–2075.
- **Tobey, James, John Reilly, and Sally Kane.** 1992. "Economic implications of global climate change for world agriculture." *Journal of Agricultural and Resource Economics*, 17(1): 195–204.
- **Tol, Richard S. J.** 1994. "The damage costs of climate change: a note on tangibles and intangibles, applied to DICE." *Energy Policy*, 22(5): 436–438.
- **Tol, Richard S. J.** 2002. "Welfare specifications and optimal control of climate change: an application of FUND." *Energy Economics*, 24(4): 367–376.
- **Tol, Richard S. J.** 2009. "The economic effects of climate change." *Journal of Economic Perspectives*, 23(2): 29–51.
- Toreti, Andrea, Delphine Deryng, Francesco N. Tubiello, Christoph Müller, Bruce A. Kimball, Gerald Moser, Kenneth Boote, Senthold Asseng, Thomas A. M. Pugh, Eline Vanuytrecht, Håkan Pleijel, Heidi Webber, Jean-Louis Durand, Frank Dentener, Andrej Ceglar, Xuhui Wang, Franz Badeck, Remi Lecerf, Gerard W. Wall, Maurits van den Berg, Petra Hoegy, Raul Lopez-Lozano, Matteo Zampieri, Stefano Galmarini, Garry J. O'Leary, Remy Manderscheid, Erik Mencos Contreras, and Cynthia Rosenzweig. 2020. "Narrowing uncertainties in the effects of elevated CO2 on crops." *Nature Food*, 1(12): 775–782.
- **Turner, Matthew A., Jeffrey S. Rosenthal, Jian Chen, and Chunyan Hao.** 2012. "Adaptation to climate change in preindustrial Iceland." *American Economic Review: Papers and Proceedings*, 102(3): 250–255.
- **UNFCCC.** 2012. "Current knowledge on relevant methodologies and data requirements as well as lessons learned and gaps identified at different levels, in assessing the risk of loss and damage associated with the adverse effects of climate change." United Nations Framework Convention on Climate Change Technical Paper FCCC/TP/2012/1.
- **Urban, Mark C.** 2015. "Accelerating extinction risk from climate change." *Science*, 348(6234): 571–573.
- van Westen, René M., Michael Kliphuis, and Henk A. Dijkstra. 2024. "Physics-based early warning signal shows that AMOC is on tipping course." *Science Advances*, 10(6): eadk1189.

- **Vermeulen, Sonja J., Bruce M. Campbell, and John S. I. Ingram.** 2012. "Climate change and food systems." *Annual Review of Environment and Resources*, 37: 195–222.
- **Wagner, Katherine R. H.** 2022. "Adaptation and adverse selection in markets for natural disaster insurance." *American Economic Journal: Economic Policy*, 14(3): 380–421.
- **Wallace, H. A.** 1920. "Mathematical inquiry into the effect of weather on corn yield in the eight corn belt states." *Monthly Weather Review*, 48(8): 439–446.
- Wang, Seaver, Adrianna Foster, Elizabeth A. Lenz, John D. Kessler, Julienne C. Stroeve, Liana O. Anderson, Merritt Turetsky, Richard Betts, Sijia Zou, Wei Liu, William R. Boos, and Zeke Hausfather. 2023. "Mechanisms and Impacts of Earth System Tipping Elements." *Reviews of Geophysics*, 61(1): e2021RG000757.
- **Weitzman, Martin L.** 2007. "A review of the Stern review on the economics of climate change." *Journal of Economic Literature*, 45(3): 703–724.
- **Weitzman, Martin L.** 2015. "Book review—a review of William Nordhaus' *The climate casino: Risk, uncertainty, and economics for a warming world.*" *Review of Environmental Economics and Policy*, 9(1): 145–156.
- Wenz, Leonie, Anders Levermann, and Maximilian Auffhammer. 2017. "North–south polarization of European electricity consumption under future warming." *Proceedings of the National Academy of Sciences*, 114(38): E7910–E7918.
- **White, Corey.** 2017. "The Dynamic Relationship between Temperature and Morbidity." *Journal of the Association of Environmental and Resource Economists*, 4(4): 1155–1198.
- Wilson, Andrew J., R. Daniel Bressler, Catherine Ivanovich, Cascade Tuholske, Colin Raymond, Radley M. Horton, Adam Sobel, Patrick Kinney, Tereza Cavazos, and Jeffrey G. Shrader. 2024. "Heat disproportionately kills young people: Evidence from wet-bulb temperature in Mexico." *Science Advances*, 10(49): eadq3367.
- **Zappala, Guglielmo.** 2024. "Propagation of extreme heat in agriculture across sectors and space." Working paper.
- **Zhang, Peng, Junjie Zhang, and Minpeng Chen.** 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation." *Journal of Environmental Economics and Management*, 83: 8–31.

Zhou, Shuang, Yao Wu, Yanming Liu, Yuan Gao, Pei Yu, Rongbin Xu, Gongbo Chen, Tingting Ye, Wenhua Yu, Juan Antonio Añel, Peng Bi, Angie Bone, Kristie L. Ebi, Antonio Gasparrini, Masahiro Hashizume, Ollie Jay, Yoonhee Kim, Sarah Perkins-Kirkpatrick, Jason Kai Wei Lee, Tiantian Li, Shao Lin, Lina Madaniyazi, Jinah Park, Fontina Petrakopoulou, Xerxes Seposo, Aurelio Tobias, Shanshan Li, and Yuming Guo. 2025. "Lethal Heat and Humidity Events." *Annual Review of Environment and Resources*, 50: forthcoming.

Online Appendix

A Papers Included in Trilemma Figure

Adams et al. (1988)

This paper *does not satisfy* desideratum (A) because the analysis is based on calibrating a specific structural model.

This paper *moderately satisfies* desideratum (B). There is adaptation through spatial equilibrium and there is a nuanced representation of hydrologic resource constraints, but there is little representation of agents responding to past or future climate change in ways that would alter yield responses from crop simulation models.

This paper *partially satisfies* desideratum (C). Nothing is estimated directly, but yield responses are based on simulation models based on agronomic understanding of crop growth.

Mendelsohn, Nordhaus and Shaw (1994)

This paper *largely satisfies* desideratum (A) because the empirical analysis is based on an envelope condition which, although relying on optimizing behavior, is not predicated on a single, specific structural model.

This paper *moderately satisfies* desideratum (B). It uses long-run average temperature as the primary explanatory variable and thereby plausibly captures the persistent nature of climate change. It goes some way towards capturing the anticipated nature of climate change (because anticipation is wrapped up in long-run weather), but anticipation may be very different when applied to the process of future climate change. And it does not capture the widespread nature of climate change because it treats units and their climates as independent of each other.

The paper *does not satisfy* desideratum (C). A primary criticism leveled against cross-sectional analyses like the one in this paper is that they are vulnerable to omitted variable bias. Indeed, Schlenker, Hanemann and Fisher (2005) demonstrate omitted variables bias in the context of this paper.

Schlenker and Roberts (2009)

This paper *fully satisfies* desideratum (A) because the authors leverage the reduced-form empirical approach to implement multiple semiparametric analyses, aiming to achieve robustness to a broader set of potential underlying models.

This paper *does not satisfy* desideratum (B). It uses short-run (growing season) variation in local weather that does not capture persistent, anticipated, or widespread aspects of climate change.

The paper *largely satisfies* desideratum (C). It uses variation in a location's growing season weather across years in order to find variation in weather that is relevant to agricultural production but also quasi-randomly assigned.

Carleton et al. (2022)

This paper *fully satisfies* desideratum (A) because the authors leverage the reduced-form empirical approach to implement multiple semiparametric analyses, aiming to achieve robustness to a broader set of potential underlying models. The analysis is based on a sufficient statistics approach.

This paper *partially satisfies* desideratum (B). The main variation is short-run, local weather that does not capture persistent, anticipated, or widespread aspects of climate change. The analysis includes interactions with longer-run weather, but this interaction only influences outcomes by modifying the estimated effect of short-run weather.

This paper *moderately satisfies* desideratum (C). It uses variation in a location's annual weather across years to identify the effect of abnormal weather on mortality. However, the cross-sectional interactions are not causally identified.

Cruz and Rossi-Hansberg (2024)

This paper *does not satisfy* desideratum (A). The estimates are based on a specific structural model of the economy.

This paper *largely satisfies* desideratum (B). The model includes the effects of spillovers in climate damages, capturing aspects of the widespread nature of climate change. The model rules out some effects of persistent climate change due to the way it models economic behavior.

This paper *partially satisfies* desideratum (C). It regresses productivities and amenities on temperature in a panel environment. However, productivities and amenities are themselves residuals that depend on a particular model, and trade and migration costs are set to make the model perfectly fit observed trade and migration data, so that their identification is ultimately from the model's structure.

Bilal and Känzig (2024)

This paper *largely satisfies* desideratum (A). It estimates a reduced-form relationship between global temperature variation and global production using frontier time series econometrics. It does not do a perfect job because the estimated model is linear rather than semiparametric, in part due to data limitations.

This paper *moderately satisfies* desideratum (B). The use of global variation in principle could capture the widespread effects of climate change, although there is little data to identify this effect.

But if successful, the filtration procedure means that the estimates do not capture the effect of anticipated or persistent climate change. The paper includes estimates of dynamics in economic outcomes (output and capital) but in response to global weather shocks rather than permanent climate change.

This paper *partially satisfies* desideratum (C). It is the mirror image of Mendelsohn, Nordhaus and Shaw (1994) in that it relies purely on time series variation whereas the earlier paper relies purely on cross-sectional variation. In principle, this time-series approach might provide as good or better identification than a cross-sectional approach, but in practice it is hampered by limited data (short time series) and retains potential for omitted variables bias.

B Analysis for Section 2

Consider a world with two regions, denoted A and B, each comprised of small actors who take the other region's choices as given. In period t, region j produces quantity $Y_t^j \triangleq Y^j(\ell_{Yt}^j, K_t^j, w_t^j)$ of a nonstorable good using labor ℓ_{Yt}^j , capital K_t^j , and weather inputs w_t^j . Region j consumes quantities q_{At}^j and q_{Bt}^j of the goods produced by regions A and B, respectively. Its representative agent derives welfare $W_t^j \triangleq W^j(q_{At}^j, q_{Bt}^j)$ from that consumption bundle, with W^j increasing in each argument and concave. Using the price of region A's good as the numeraire, region A's time t budget constraint is $Y_t^A = q_{At}^A + p_t q_{Bt}^A$ and region B's time t budget constraint is $p_t Y_t^B = q_{At}^B + p_t q_{Bt}^B$. The market for the good produced by region j clears with $Y_t^j = q_{jt}^A + q_{jt}^B$. Each representative agent takes the terms of trade and the other region's capital stock as given, so that regions do not act strategically.

Region j is endowed with L^j units of labor. It allocates ℓ^j_{Yt} units of that labor to producing its good, and it allocates ℓ^j_{Kt} units of that labor to producing capital. The labor market clears with $\ell^j_{Yt} + \ell^j_{Kt} = L^j$. Region j's capital stock K^j_t depreciates at per-period rate $\delta \in (0,1)$ and increases as $f(\ell^j_{Kt})$, with f, f' > 0 and f'' < 0. Capital and labor are here immobile across regions. All agents observe capital and weather in all regions.

The representative agent in region A at time t, with discount rate r > 0, solves the following infinite-horizon problem:

$$\max_{\{\ell_{Ys}^{A}, \ell_{Ks}^{A}, q_{As}^{A}, q_{Bs}^{A}\}_{s=t}^{\infty}} \sum_{s=t}^{\infty} \frac{1}{(1+r)^{s-t}} E_{t} \left[W^{A}(q_{As}^{A}, q_{Bs}^{A}) \right]$$
s.t. $K_{s+1}^{A} = f(\ell_{Ks}^{A}) + (1-\delta)K_{s}^{A}$

$$Y^{A}(\ell_{Ys}^{A}, K_{s}^{A}, w_{s}^{A}) = q_{As}^{A} + p_{s}q_{Bs}^{A}$$

$$L^{A} = \ell_{Ys}^{A} + \ell_{Ks}^{A},$$

where E_t indicates expectations at the common time t information set. The representative agent in region B at time t solves an analogous problem, with the budget constraint adjusted appropriately. Optimal input and consumption choices in region j solve the following Bellman equation:

$$V^{j}(K_{t}^{j}, K_{t}^{k}, w_{t}^{j}, w_{t}^{k}) = \max_{\ell_{Yt}^{j}, \ell_{Kt}^{j}, q_{At}^{j}, q_{Bt}^{j}} \left\{ W^{j}(q_{At}^{j}, q_{Bt}^{j}) + \frac{1}{1+r} E_{t} \left[V^{j}(K_{t+1}^{j}, K_{t+1}^{k}, w_{t+1}^{j}, w_{t+1}^{k}) \right] \right\}.$$
(A-1)

Define $V_t^j \triangleq V^j(K_t^j, K_t^k, w_t^j, w_t^k)$.

Substituting in the budget constraint and the transition for capital in region A, and then substituting in region A's labor constraint, equation (A-1) for region A is equivalent to:

$$\begin{split} V^{A}(K_{t}^{A}, K_{t}^{B}, w_{t}^{A}, w_{t}^{B}) &= \max_{\ell_{Yt}^{A}} \max_{q_{Bt}^{A}} \bigg\{ W^{A}(Y^{A}(\ell_{Yt}^{A}, K_{t}^{A}, w_{t}^{A}) - p_{t}q_{Bt}^{A}, q_{Bt}^{A}) \\ &+ \frac{1}{1+r} E_{t} \left[V^{A} \bigg(f(L^{A} - \ell_{Yt}^{A}) + (1-\delta)K_{t}^{A}, K_{t+1}^{B}, w_{t+1}^{A}, w_{t+1}^{B} \bigg) \right] \bigg\}. \end{split}$$

$$(A-2)$$

The first-order condition for q_{Bt}^A yields:

$$p_{t} = \frac{\frac{\partial W^{A}(q_{At}^{A}, q_{Bt}^{A})}{\partial q_{Bt}^{A}}}{\frac{\partial W^{A}(q_{At}^{A}, q_{Bt}^{A})}{\partial q_{At}^{A}}}.$$
(A-3)

Substituting for q_{At}^A from the budget constraint, this equation implicitly defines q_{Bt}^A as a function of p_t and Y_t^A , and the analogous equation for region B implicitly defines q_{Bt}^B as a function of p_t and Y_t^B . Market-clearing for region B's production good becomes $Y_t^B = q_{Bt}^A(p_t, Y_t^A) + q_{Bt}^B(p_t, Y_t^B)$, which implicitly defines p_t as $p(Y_t^A, Y_t^B)$.

Because regions take the terms of trade as given, problem (A-2) becomes:

$$\begin{split} V^{A}(K_{t}^{A}, K_{t}^{B}, w_{t}^{A}, w_{t}^{B}) \\ &= \max_{\ell_{Yt}^{A}} \left\{ W^{A} \bigg(Y^{A}(\ell_{Yt}^{A}, K_{t}^{A}, w_{t}^{A}) - p_{t} q_{B}^{A}(p_{t}, Y^{A}(\ell_{Yt}^{A}, K_{t}^{A}, w_{t}^{A})), \ q_{B}^{A}(p_{t}, Y^{A}(\ell_{Yt}^{A}, K_{t}^{A}, w_{t}^{A})) \right) \\ &+ \frac{1}{1+r} E_{t} \left[V^{A} \bigg(f(L^{A} - \ell_{Yt}^{A}) + (1-\delta)K_{t}^{A}, K_{t+1}^{B}, w_{t+1}^{A}, w_{t+1}^{B} \bigg) \right] \right\}. \end{split} \tag{A-4}$$

The first-order condition for ℓ_{Yt}^A is

$$0 = \left[\frac{\partial W_t^A}{\partial q_{At}^A} + \frac{\partial q_{Bt}^A}{\partial Y_t^A} \left(\frac{\partial W_t^A}{\partial q_{Bt}^A} - p_t \frac{\partial W_t^A}{\partial q_{At}^A} \right) \right] \frac{\partial Y_t^A}{\partial \ell_{Yt}^A} - f'(\ell_{Kt}^A) \frac{1}{1+r} E_t \left[\frac{\partial V^A(K_{t+1}^A, K_{t+1}^B, w_{t+1}^A, w_{t+1}^B)}{\partial K_{t+1}^A} \right].$$

Substitute p_t from (A-3):

$$0 = \frac{\partial W_t^A}{\partial q_{At}^A} \frac{\partial Y_t^A}{\partial \ell_{Yt}^A} - f'(\ell_{Kt}^A) \frac{1}{1+r} E_t \left[\frac{\partial V^A(K_{t+1}^A, K_{t+1}^B, w_{t+1}^A, w_{t+1}^B)}{\partial K_{t+1}^A} \right]. \tag{A-5}$$

The optimal choice of ℓ_{Yt}^A equates the marginal benefit in terms of today's production and the marginal cost in terms of forgone capital in the future.

Equation (A-5) implicitly defines ℓ_{Yt}^A as a function of ℓ_{Yt}^B , K_t^A , K_t^B , \tilde{w}_t^A , \tilde{w}_t^B , and C. The analogous equation for region B implicitly defines ℓ_{Yt}^B as a function of ℓ_{Yt}^A , K_t^A , K_t^B , \tilde{w}_t^A , \tilde{w}_t^B , and C. Observe that:

$$\frac{\mathrm{d}\ell_{Yt}^{A}}{\mathrm{d}C} = \frac{\partial\ell_{Yt}^{A}}{\partial C} + \frac{\partial\ell_{Yt}^{A}}{\partial K_{t}^{A}} \frac{\mathrm{d}K_{t}^{A}}{\mathrm{d}C} + \frac{\partial\ell_{Yt}^{A}}{\partial K_{t}^{B}} \frac{\mathrm{d}K_{t}^{B}}{\mathrm{d}C} + \frac{\partial\ell_{Yt}^{A}}{\partial\ell_{Yt}^{B}} \frac{\mathrm{d}\ell_{Yt}^{B}}{\mathrm{d}C}.$$
 (A-6)

Substitute the analogous equation for region B and collect terms with $d\ell_{Yt}^A/dC$ on the left-hand side:

$$\left[1 - \frac{\partial \ell_{Yt}^{B}}{\partial \ell_{Yt}^{A}} \frac{\partial \ell_{Yt}^{A}}{\partial \ell_{Yt}^{B}}\right] \frac{\mathrm{d}\ell_{Yt}^{A}}{\mathrm{d}C} = \underbrace{\frac{\partial \ell_{Yt}^{A}}{\partial C} + \frac{\partial \ell_{Yt}^{A}}{\partial K_{t}^{A}} \frac{\mathrm{d}K_{t}^{A}}{\mathrm{d}C} + \frac{\partial \ell_{Yt}^{A}}{\partial K_{t}^{B}} \frac{\mathrm{d}K_{t}^{B}}{\mathrm{d}C}}_{\zeta_{At}} + \underbrace{\frac{\partial \ell_{Yt}^{A}}{\partial K_{t}^{B}} \frac{\mathrm{d}K_{t}^{A}}{\mathrm{d}C}}_{\zeta_{At}} + \underbrace{\frac{\partial \ell_{Yt}^{B}}{\partial K_{t}^{A}} \frac{\mathrm{d}K_{t}^{A}}{\mathrm{d}C} + \frac{\partial \ell_{Yt}^{B}}{\partial K_{t}^{B}} \frac{\mathrm{d}K_{t}^{B}}{\mathrm{d}C}}_{\zeta_{Bt}}\right]. \tag{A-7}$$

Applying the implicit function theorem to equation (A-5) and using the second-order condition for an optimum, the term labeled ζ_{At} can be written as:

$$\zeta_{At} = \gamma_{At}^{now} + \gamma_{At}^{future} + \gamma_{At}^{past} + \gamma_{At}^{elsewhere},$$

where

$$\begin{split} \gamma_{At}^{now} &\propto & \frac{\partial W_t^A}{\partial q_{At}^A} \frac{\partial^2 Y_t^A}{\partial \ell_{Yt}^A} \partial w_t^A \theta_A + \left[\frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} + \frac{\partial q_{Bt}^A}{\partial Y_t^A} \left(\frac{\partial^2 W_t^A}{\partial q_{At}^A \partial q_{Bt}^A} - p_t \frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} \right) \right] \frac{\partial Y_t^A}{\partial \ell_{Yt}^A} \frac{\partial Y_t^A}{\partial w_t^A} \theta_A \\ &\quad + \left[-\frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} \left(q_{Bt}^A + p_t \frac{\partial q_{Bt}^A}{\partial p_t} \right) + \frac{\partial^2 W_t^A}{\partial q_{At}^A \partial q_{Bt}^A} \frac{\partial q_{Bt}^A}{\partial p_t} \right] \frac{\partial Y_t^A}{\partial Y_t^A} \frac{\partial Y_t^A}{\partial w_t^A} \theta_A, \\ &\quad \gamma_{At}^{future} &\propto -f'(\ell_{Kt}^A) \frac{1}{1+r} E_t \left[\frac{\partial^2 V^A (K_{t+1}^A, K_{t+1}^B, w_{t+1}^A, w_{t+1}^B)}{\partial K_{t+1}^A \partial w_{t+1}^A} \right] \theta_A, \\ &\quad \gamma_{At}^{past} &\propto \frac{dK_t^A}{dC} \left\{ \frac{\partial W_t^A}{\partial q_{At}^A} \frac{\partial^2 Y_t^A}{\partial \ell_{Yt}^A \partial K_t^A} + \left[\frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} + \frac{\partial q_{Bt}^A}{\partial q_{At}^A} \left(\frac{\partial^2 W_t^A}{\partial q_{At}^A \partial q_{Bt}^A} - p_t \frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} \right) \right] \frac{\partial Y_t^A}{\partial \ell_{Yt}^A} \frac{\partial Y_t^A}{\partial K_t^A} \\ &\quad + \left[-\frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} \left(q_{Bt}^A + p_t \frac{\partial q_{Bt}^A}{\partial p_t} \right) + \frac{\partial^2 W_t^A}{\partial q_{At}^A \partial q_{Bt}^A} \frac{\partial q_{Bt}^A}{\partial p_t} \right] \frac{\partial Y_t^A}{\partial Y_t^A} \frac{\partial Y_t^A}{\partial X_t^A} \\ &\quad - (1-\delta)f'(\ell_{Kt}^A) \frac{1}{1+r} E_t \left[\frac{\partial^2 V^A (K_{t+1}^A, K_{t+1}^B, w_{t+1}^A, w_{t+1}^B)}{\partial (K_{t+1}^A)^2} \right] \right] \right\}, \\ &\quad \gamma_{At}^{elsewhere} &\propto \left[-\frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} \left(q_{Bt}^A + p_t \frac{\partial q_{Bt}^A}{\partial p_t} \right) + \frac{\partial^2 W_t^A}{\partial q_{At}^A \partial q_{Bt}^A} \frac{\partial p_t}{\partial p_t} \right] \frac{\partial Y_t^A}{\partial Y_t^A} \frac{\partial p_t}{\partial w_t^B} \theta_B \\ &\quad - f'(\ell_{Kt}^A) \frac{1}{1+r} E_t \left[\frac{\partial^2 V^A (K_{t+1}^A, K_{t+1}^B, w_{t+1}^A, w_{t+1}^B)}{\partial K_{t+1}^A \partial w_{t+1}^B} \right] \theta_B \\ &\quad + \left[-\frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} \left(q_{Bt}^A + p_t \frac{\partial q_{Bt}^A}{\partial p_t} \right) + \frac{\partial^2 W_t^A}{\partial q_{At}^A \partial q_{Bt}^A} \frac{\partial p_t}{\partial p_t} \right] \frac{\partial Y_t^A}{\partial Y_t^B} \frac{\partial p_t}{\partial W_t^B} \frac{\partial Y_t^B}{\partial W_t^B} \theta_B \\ &\quad - f'(\ell_{Kt}^A) \frac{1}{1+r} E_t \left[\frac{\partial^2 V^A (K_{t+1}^A, K_{t+1}^B, w_{t+1}^A, w_{t+1}^B)}{\partial K_{t+1}^A \partial w_{t+1}^B} \right] \theta_B \\ &\quad + \left[-\frac{\partial^2 W_t^A}{\partial [q_{At}^A]^2} \left(q_{Bt}^A + p_t \frac{\partial q_{Bt}^A}{\partial p_t} \right) + \frac{\partial^2 W_t^A}{\partial q_{At}^A \partial q_{Bt}^A} \frac{\partial p_t}{\partial p_t} \right] \frac{\partial Y_t^A}{\partial Y_t^B} \frac{\partial Y_t^B}{\partial W_t^B} \frac{\partial Y_t^B}{\partial W_t^B} \frac{\partial Y$$

 ζ_{Bt} follows analogously. Substituting into equation (A-7), we find:

$$\frac{\mathrm{d}\ell_{Yt}^{A}}{\mathrm{d}C} = \frac{1}{1 - \frac{\partial \ell_{Yt}^{B}}{\partial \ell_{Yt}^{A}} \frac{\partial \ell_{Yt}^{A}}{\partial \ell_{Yt}^{B}}} \left[\gamma_{At}^{now} + \gamma_{At}^{future} + \gamma_{At}^{past} + \gamma_{At}^{elsewhere} \right]
+ \frac{1}{1 - \frac{\partial \ell_{Yt}^{B}}{\partial \ell_{Yt}^{A}} \frac{\partial \ell_{Yt}^{A}}{\partial \ell_{Yt}^{B}}} \frac{\partial \ell_{Yt}^{A}}{\partial \ell_{Yt}^{B}} \left[\gamma_{Bt}^{now} + \gamma_{Bt}^{future} + \gamma_{Bt}^{past} + \gamma_{Bt}^{elsewhere} \right].$$
(A-8)

Observe that:

$$\begin{split} \gamma_{Bt}^{elsewhere} & \propto \left[-\frac{\partial^2 W_t^B}{\partial q_{Bt}^B \partial q_{At}^B} \left(q_{Bt}^B - Y_t^B + p_t \frac{\partial q_{Bt}^B}{\partial p_t} \right) + \frac{\partial^2 W_t^B}{\partial [q_{Bt}^B]^2} \frac{\partial q_{Bt}^B}{\partial p_t} \right] \frac{\partial Y_t^B}{\partial \ell_{Yt}^B} \frac{\partial p_t}{\partial Y_t^A} \frac{\partial Y_t^A}{\partial w_t^A} \theta_A \\ & - f'(\ell_{Kt}^B) \frac{1}{1+r} E_t \left[\frac{\partial^2 V^B (K_{t+1}^B, K_{t+1}^A, w_{t+1}^B, w_{t+1}^A)}{\partial K_{t+1}^B \partial w_{t+1}^A} \right] \theta_A \\ & + \left[-\frac{\partial^2 W_t^B}{\partial q_{Bt}^B \partial q_{Bt}^A} \left(q_{Bt}^B - Y_t^B + p_t \frac{\partial q_{Bt}^B}{\partial p_t} \right) + \frac{\partial^2 W_t^B}{\partial [q_{Bt}^B]^2} \frac{\partial q_{Bt}^B}{\partial p_t} \right] \frac{\partial Y_t^B}{\partial \ell_{Yt}^B} \frac{\partial p_t}{\partial Y_t^A} \frac{\partial Y_t^A}{\partial K_t^A} \frac{dK_t^A}{dC} \\ & - (1-\delta) f'(\ell_{Kt}^B) \frac{1}{1+r} E_t \left[\frac{\partial^2 V^B (K_{t+1}^B, K_{t+1}^A, w_{t+1}^B, w_{t+1}^A)}{\partial K_{t+1}^B \partial K_{t+1}^A} \right] \frac{dK_t^A}{dC}. \end{split}$$

Substituting for $\gamma_{Bt}^{elsewhere}$ in (A-8), using the implicit function theorem with equation (A-5) to obtain $\partial \ell_{Yt}^A/\partial \ell_{Yt}^B$, and collecting terms, we have:

$$\frac{\mathrm{d}\ell_{Yt}^{A}}{\mathrm{d}C} = \Gamma_{At}^{now} + \Gamma_{At}^{future} + \Gamma_{At}^{past} + \Gamma_{At}^{elsewhere},\tag{A-9}$$

where:

$$\begin{split} \Gamma_{At}^{now} &\triangleq \frac{1}{1 - \frac{\partial \ell_{Yt}^B}{\partial \ell_{Yt}^A} \frac{\partial \ell_{Yt}^A}{\partial \ell_{Yt}^B}}} \left\{ \gamma_{At}^{now} \right. \\ &\quad + \chi_{At} \left[- \frac{\partial^2 W_t^B}{\partial q_{Bt}^B} \left(q_{Bt}^B - Y_t^B + p_t \frac{\partial q_{Bt}^B}{\partial p_t} \right) + \frac{\partial^2 W_t^B}{\partial [q_{Bt}^B]^2} \frac{\partial q_{Bt}^B}{\partial p_t} \right] \frac{\partial Y_t^B}{\partial \ell_{Yt}^B} \frac{\partial p_t}{\partial Y_t^A} \frac{\partial Y_t^A}{\partial w_t^A} \theta_A \bigg\}, \\ \Gamma_{At}^{future} &\triangleq \frac{1}{1 - \frac{\partial \ell_{Pt}^B}{\partial \ell_{Yt}^A} \frac{\partial \ell_{Yt}^A}{\partial \ell_{Yt}^B}} \left\{ \gamma_{At}^{future} - \chi_{At} f'(\ell_{Kt}^B) \frac{1}{1 + r} E_t \left[\frac{\partial^2 V^B(K_{t+1}^B, K_{t+1}^A, w_{t+1}^B, w_{t+1}^A)}{\partial K_{t+1}^B \partial w_{t+1}^A} \right] \theta_A \bigg\}, \\ \Gamma_{At}^{past} &\triangleq \frac{1}{1 - \frac{\partial \ell_{Yt}^B}{\partial \ell_{Yt}^A} \frac{\partial \ell_{Yt}^A}{\partial \ell_{Yt}^A}} \left\{ \gamma_{At}^{past} \right. \\ &\quad + \chi_{At} \left[- \frac{\partial^2 W_t^B}{\partial q_{Bt}^B \partial q_{Bt}^A} \left(q_{Bt}^B - Y_t^B + p_t \frac{\partial q_{Bt}^B}{\partial p_t} \right) + \frac{\partial^2 W_t^B}{\partial [q_{Bt}^B]^2} \frac{\partial q_{Bt}^B}{\partial p_t} \right] \frac{\partial Y_t^B}{\partial \ell_{Yt}^B} \frac{\partial p_t}{\partial V_t^A} \frac{\partial Y_t^A}{\partial K_t^A} \frac{dK_t^A}{dC} \\ &\quad - \chi_{At} (1 - \delta) f'(\ell_{Kt}^B) \frac{1}{1 + r} E_t \left[\frac{\partial^2 V^B(K_{t+1}^B, K_{t+1}^A, w_{t+1}^B, w_{t+1}^A)}{\partial K_{t+1}^B \partial K_{t+1}^A} \right] \frac{dK_t^A}{dC} \bigg\}, \\ \Gamma_{At}^{elsewhere} &\triangleq \frac{1}{1 - \frac{\partial \ell_{Pt}^B}{\partial \ell_{Yt}^A} \frac{\partial \ell_{Yt}^A}{\partial \ell_{Yt}^A}} \frac{\partial \gamma_{t+1}^B}{\partial \ell_{Yt}^B} \left\{ \gamma_{At}^{elsewhere} + \chi_{At} \left[\gamma_{Bt}^{now} + \gamma_{Bt}^{future} + \gamma_{Bt}^{past} \right] \right\}, \\ \chi_{At} &\propto f'(\ell_{Kt}^B) f'(\ell_{Kt}^A) \frac{1}{1 + r} E_t \left[\frac{\partial^2 V^A(K_{t+1}^A, K_{t+1}^B, w_{t+1}^A, w_{t+1}^B)}{\partial K_{t+1}^A \partial K_{t+1}^B} \right]. \end{split}$$

The leading fraction in each of the four Γ terms is strictly positive in the regular case, in which investment in one region moves less than one for one with investment in the other. χ_{At} determines how investment in region A responds to investment in region B, via the expected change in

subsequent periods' prices. It multiplies terms that describe how climate affects investment in region B.

Now relate the channels within each Γ that are informally described in Section 2 to the formal expressions. Γ_{At}^{now} has four components. The first three are from γ_{At}^{now} : the change in weather may directly alter the marginal product of labor (first term on first line in γ_{At}^{now}), the change in weather may alter the value of labor's marginal product by directly affecting total output in region A (second term on first line in γ_{At}^{now}), and the change in weather may alter prices (second line in γ_{At}^{now}). The fourth component reflects how the change in weather may alter investment decisions in region B (terms with χ_{At} in Γ_{At}^{now}).

 Γ_{At}^{future} has two components: how expected changes in weather directly alter the marginal product of region A's capital in future periods (in γ_{At}^{future}), and how these expectations can affect region A's time t investment via region B's time t investment (term with χ_{At} in Γ_{At}^{future}).

In Γ_{At}^{past} , the time t capital stock may affect the time t marginal product of labor (first term on the first line in γ_{At}^{past}), the time t value of that marginal product at constant prices (second term on the first line in γ_{At}^{past}), time t prices (second line in γ_{At}^{past}), or the expected marginal product of capital in later periods, whether directly (third line in γ_{At}^{past}) or by affecting investment in region B (terms with χ_{At} in Γ_{At}^{past}). Let t_0 indicate some time prior to which C had been constant and prior to which there was no knowledge that C would ever change. Then, from the capital transition equation, labor market-clearing, and equation (A-9):

$$\frac{\mathrm{d}K_t^A}{\mathrm{d}C} = -\sum_{s=t_0}^{t-1} (1-\delta)^{t-1-s} f'(\ell_{Ks}^A) \left[\Gamma_{As}^{now} + \Gamma_{As}^{future} + \Gamma_{As}^{past} + \Gamma_{As}^{elsewhere} \right]. \tag{A-10}$$

The capital stock contains a memory of all past effects of climate change, which encompass how climate change affected weather in all earlier periods and how climate change affected expectations of subsequent weather held by agents in earlier periods.³³

In $\Gamma_{At}^{elsewhere}$, current changes in weather elsewhere on the planet affect prices in region A (first line in $\gamma_{At}^{elsewhere}$); anticipated changes in weather elsewhere on the planet affect investment incentives in region A (second line in $\gamma_{At}^{elsewhere}$); past changes in weather elsewhere around the planet affect capital stocks elsewhere around the planet and thereby affect both prices (third line in $\gamma_{At}^{elsewhere}$) and investment incentives (fourth line in $\gamma_{At}^{elsewhere}$) in region A; and all such changes can affect investment incentives in region B and thereby affect investment incentives in region A (terms with χ_{At} in $\Gamma_{At}^{elsewhere}$).

³³The evaluation point for the partial derivatives in (4) can be different from the evaluation point for the partial derivatives in this appendix and in Section 2 because climate change alters the incoming capital stock. The evaluation points are the same only for the very first increment of surprising climate change.

To derive the effect of climate on period welfare in region A, observe that

$$\frac{\mathrm{d}W_{t}^{A}}{\mathrm{d}C} = \left[\frac{\partial W_{t}^{A}}{\partial q_{At}^{A}} + \frac{\partial q_{Bt}^{A}}{\partial Y_{t}^{A}} \left(\frac{\partial W_{t}^{A}}{\partial q_{Bt}^{A}} - p_{t}\frac{\partial W_{t}^{A}}{\partial q_{At}^{A}}\right)\right] \frac{\mathrm{d}Y_{t}^{A}}{\mathrm{d}C} + \left[-\frac{\partial W_{t}^{A}}{\partial q_{At}^{A}} q_{Bt}^{A} + \frac{\partial q_{Bt}^{A}}{\partial p_{t}} \left(\frac{\partial W_{t}^{A}}{\partial q_{Bt}^{A}} - p_{t}\frac{\partial W_{t}^{A}}{\partial q_{At}^{A}}\right)\right] \frac{\mathrm{d}p_{t}}{\mathrm{d}C}.$$

Using the equilibrium price in (A-3), we find:

$$\frac{\mathrm{d}W_t^A}{\mathrm{d}C} = \frac{\partial W_t^A}{\partial q_{At}^A} \left[\frac{\mathrm{d}Y_t^A}{\mathrm{d}C} - \underbrace{\left(\frac{\partial p_t}{\partial Y_t^A} \frac{\mathrm{d}Y_t^A}{\mathrm{d}C} + \frac{\partial p_t}{\partial Y_t^B} \frac{\mathrm{d}Y_t^B}{\mathrm{d}C} \right)}_{\mathrm{d}p_t/\mathrm{d}C} q_{Bt}^A \right].$$

We have the effect of climate change on own production and also the effect of climate change on the budget set, via its effect on prices.

To derive the effect of climate change in intertemporal welfare in region A, differentiate the maximized value function from equation (A-4), substitute in the first-order condition for ℓ_{Yt}^A , and substitute for p_t from equation (A-3):

$$\frac{\mathrm{d}V_{t}^{A}}{\mathrm{d}C} = \frac{\partial W_{t}^{A}}{\partial q_{At}^{A}} \left(1 - \frac{\partial p_{t}}{\partial Y_{t}^{A}} q_{Bt}^{A} \right) \left(\frac{\partial Y_{t}^{A}}{\partial w_{t}^{A}} \theta_{A} + \frac{\partial Y_{t}^{A}}{\partial K_{t}^{A}} \frac{\mathrm{d}K_{t}^{A}}{\mathrm{d}C} \right) - \frac{\partial W_{t}^{A}}{\partial q_{At}^{A}} \frac{\partial p_{t}}{\partial Y_{t}^{B}} q_{Bt}^{A} \left(\frac{\partial Y_{t}^{B}}{\partial w_{t}^{B}} \theta_{B} + \frac{\partial Y_{t}^{B}}{\partial K_{t}^{B}} \frac{\mathrm{d}K_{t}^{B}}{\mathrm{d}C} \right) + \frac{1}{1+r} E_{t} \left[\frac{\mathrm{d}V_{t+1}^{A}}{\mathrm{d}C} + f'(\ell_{Kt}^{A}) \frac{\mathrm{d}V_{t+1}^{A}}{\mathrm{d}K_{t+1}^{A}} \frac{\mathrm{d}\ell_{Yt}^{A}}{\mathrm{d}C} \right].$$

Advancing by one period yields dV_{t+1}^A/dC . We can then substitute dV_{t+1}^A/dC into the right-hand side. Repeating this process yields:

$$\frac{\mathrm{d}V_{t}^{A}}{\mathrm{d}C} = \sum_{s=t}^{\infty} \frac{1}{(1+r)^{s-t}} E_{t} \left[\frac{\partial W_{s}^{A}}{\partial q_{As}^{A}} \left(1 - \frac{\partial p_{s}}{\partial Y_{s}^{A}} q_{Bs}^{A} \right) \left(\frac{\partial Y_{s}^{A}}{\partial w_{s}^{A}} \theta_{A} + (1-\delta)^{s-t} \frac{\partial Y_{s}^{A}}{\partial K_{s}^{A}} \frac{\mathrm{d}K_{t}^{A}}{\mathrm{d}C} \right) \right] - \sum_{s=t}^{\infty} \frac{1}{(1+r)^{s-t}} E_{t} \left[\frac{\partial W_{s}^{A}}{\partial q_{As}^{A}} \frac{\partial p_{s}}{\partial Y_{s}^{B}} q_{Bs}^{A} \left(\frac{\partial Y_{s}^{B}}{\partial w_{s}^{B}} \theta_{B} + \frac{\partial Y_{s}^{B}}{\partial \ell_{Ys}^{B}} \frac{\mathrm{d}\ell_{Ys}^{B}}{\mathrm{d}C} + \frac{\partial Y_{s}^{B}}{\partial K_{s}^{B}} \frac{\mathrm{d}K_{s}^{B}}{\mathrm{d}C} \right) \right].$$

The effects of ℓ_{Ys}^A drop out by the envelope theorem, and therefore so too do adjustments to region A's capital stocks via current and future investment.

C An Alternative Formalization to the Adaptation Cost Recovery of Carleton et al. (2022)

Let $C_i(t)$ be the climate in location i at time t, $A(C_i(t))$ be an action that can be used for adaptation at time t, $c(A(C_i(t)))$ be adaptation costs at time t, and $y(w_i(t), A(C_i(t)))$ be an outcome at time t, in terms of value. Weather $w_i(t)$ has mean $C_i(t)$ and a stochastic component that is independently and identically distributed over time.

Agents choose time t actions with knowledge of $C_i(t)$ but before $w_i(t)$ is realized. They choose actions to maximize expected net benefits:

$$\max_{A(\cdot)} \int_{t_0}^{\infty} e^{-rt} E\left[y(w_i(t), A(C_i(t))) - c(A(C_i(t)))\right] dt.$$
 (A-11)

where the discount rate is r > 0. Because there are no intertemporal linkages (e.g., adaptation is assumed completely transient), this integral can be maximized pointwise, so that optimal actions in time t satisfy:

$$\max_{A(C_i(t))} E \left[y(w_i(t), A(C_i(t))) - c(A(C_i(t))) \right].$$
 (A-12)

Consider climate change from time t_0 to time T. Carleton et al. (2022) are interested in adaptation costs $c(A^*(C_i(T))) - c(A^*(C_i(t_0)))$, where a star indicates an optimized outcome. By the second fundamental theorem of calculus,

$$c(A^*(C_i(T))) - c(A^*(C_i(t_0))) = \int_{t_0}^T c'(A^*(C_i(s))) A^{*'}(C_i(s)) C'_i(s) ds.$$

From (A-12), optimal adaptation in each instant t solves the first-order condition:

$$E\left[\frac{\partial y(w_i(t), A^*(C_i(t)))}{\partial A}\right] = c'(A^*(C_i(t))).$$

Substituting in pointwise, adaptation costs are

$$c(A^*(C_i(T))) - c(A^*(C_i(t_0))) = \int_{t_0}^T E\left[\frac{\partial y(w_i(s), A^*(C_i(s)))}{\partial A}\right] A^{*\prime}(C_i(s)) C_i'(s) ds.$$

Move the derivative of A^* inside the expectation operator:

$$c(A^*(C_i(T))) - c(A^*(C_i(t_0))) = \int_{t_0}^T E\left[\frac{\partial y(w_i(s), A^*(C_i(s)))}{\partial A} A^{*\prime}(C_i(s))\right] C_i'(s) ds. \quad (A-13)$$

To recover the integrand in (A-13), recall regression (5):

$$y_{it} = \beta^{panel} w_{it} + \gamma^{cs,panel} \bar{w}_i w_{it} + \delta_i + \nu_t + \varepsilon_{it}.$$

Carleton et al. (2022) assume

$$E\left[\frac{\partial y(w_i, A(C_i))}{\partial A}A'(C_i)\right] = E\left[\frac{\partial y_{it}}{\partial \bar{w}_i}\right],\tag{A-14}$$

so that, for purposes of adaptation, cross-sectional variation in \bar{w}_i is equivalent to variation in C_i over time. This assumption suits their timeless setting in which the history and future of climate change are irrelevant.

Substituting from regression (5) into (A-14),

$$E\left[\frac{\partial y(w_i, A(C_i))}{\partial A}A'(C_i)\right] = \hat{\gamma}^{cs, panel}E[w_{it}].$$

Using that equivalence, adaptation costs in (A-13) become

$$c(A^*(C_i(T))) - c(A^*(C_i(t_0))) = \int_{t_0}^T \hat{\gamma}^{cs,panel} E[w_{is}] C_i'(s) \, ds.$$

Using $E[w_{is}] = C_i(s)$, this becomes:

$$c(A^*(C_i(T))) - c(A^*(C_i(t_0))) = \int_{t_0}^T \hat{\gamma}^{cs,panel} C_i(s) C_i'(s) ds,$$

which we can discretize as

$$c(A^*(C_i(T))) - c(A^*(C_i(t_0))) \approx \hat{\gamma}^{cs,panel} \sum_{t=t_0+1}^T C_i(t) \left[C_i(t) - C_i(t-1) \right].$$

Within this economic environment, a regression that shows how the marginal effects of weather vary cross-sectionally with climate thereby yields how the total costs of adaptation accrue over time as a location's climate changes.

The key assumption is the timeless nature of the decision-making environment. It has two implications. First, optimizing agents equate the flow of marginal costs to the flow of marginal benefits at every instant, so that instantaneous marginal costs can be substituted pointwise for instantaneous marginal benefits (equation (A-12)). Second, adaptation to different climates over time is equivalent to observed cross-sectional adaptation to different climates over space (equation (A-14)). If adaptation were instead not completely transient, optimization would not permit

problem (A-11) to be solved via (A-12) and there is little reason to expect (A-14) to hold.